
Łukasz Czajka Exercise sheet 6 Rocq

Exercise 1 (Tail-recursive reverse).

In this exercise we prove some properties of the tail-recursive list reversal function from
the first lecture. To make the task easier, we move the recursive helper function to a
separate definition.

Fixpoint itrev {A} (lst acc : list A) :=
match lst with
| [] => acc
| h :: t => itrev t (h :: acc)
end.

Definition rev {A} (lst : list A) := itrev lst [].

Prove by induction the following facts about rev.

1. forall l1 l2 : list A, rev (l1 ++ l2) = rev l2 ++ rev l1.

2. forall l : list A, rev (rev l) = l.

3. forall l : list A, rev l = List.rev l.

Is it possible to prove rev = List.rev?

Hint. You need to formulate an appropriate helper lemma about itrev. Recall the
induction heuristics from the last lecture.

Exercise 2 (Palindromes).

Define an inductive predicate

Inductive Palindrome {A : Set} : list A -> Prop := ...

such that Palindrome l is provable iff the list l is a palindrome, i.e., it is equal to its
own reversal. Prove:

1. forall A (l : list A), Palindrome l -> List.rev l = l.

*2. forall A (l : list A), List.rev l = l -> Palindrome l.

*Exercise 3 (Extensionality).

1. Show that predicate extensionality implies propositional extensionality.

Hint. For variables P,Q, the equality P = Q is equivalent to

(λx : bool.P )true = (λx : bool.Q)true.

2. Show that propositional extensionality and functional extensionality together imply
predicate exensionality.

3. Show that propositional extensionality and functional extensionality together imply
the following statement:

∀AB : Type.∀R1R2 : A → B → Prop.(∀xy.R1xy ↔ R2xy) → R1 = R2.

1


