Lukasz Czajka Exercise sheet 10 Rocq

Exercise 1 (Forward reasoning).

Define a tactic fwd_modus_ponens which repeatedly looks for two hypotheses H1 : A
H2 : A -> B and replaces H2 with H2' : B.

Exercise 2 (Arithmetic expressions).

Consider the following inductive type of arithmetic expressions.

Inductive aexpr :=

| Nval : nat -> aexpr

| Avar : string -> aexpr

| Aplus : aexpr -> aexpr -> aexpr
| Amul : aexpr -> aexpr -> aexpr.

Definition state := string -> nat.

Variables (Avar s) are identified by their string names (s).

1. Define a function aval : state -> aexpr -> nat which evaluates arithmetic ex-
pressions.

2. Define a function asimp : aexpr -> aexpr which (recursively) simplifies arithmetic
expressions by:

e replacing Aplus (Nval n1) (Nval n2) with Nval (nl + n2),

e replacing Aplus (Nval 0) e and Aplus e (Nval 0) with e,

e replacing Amul (Nval nl) (Nval n2) with Nval (nl * n2),

e replacing Amul (Nval 0) e and Amul e (Nval 0) with 0,

e replacing Amul (Nval 1) e and Amul e (Nval 1) with e.

For example:
asimp (Aplus (Nval 3) (Amul (Nval 0) (Avar "a"))) = Nval 3
3. Prove: forall s e, aval s (asimp e) = aval s e.

Hint. The imports from the standard library you may need are: String, Bool, Arith.
Try to use sauto as much as possible. It may be helpful to split up the definition of asimp
into several functions and separately prove helper lemmas about them.



Lukasz Czajka Exercise sheet 10 Rocq

Exercise 3 (Dependently typed functions).

Implement the following functions on lists which take an additional proof argument that
restricts the input values.

1. head : forall (A : Type) (1 : list A), 1 <> [] -> A.
2. tail : forall (A : Type) (1 : 1list A), 1 <> [] -> list A.

3. nth : forall (A : Type) (n : nat) (1 : list A),
n < List.length 1 -> 1list A.

Exercise 4 (Computable total orders).

1. Define an inductive type ComputableTotalOrder (A : Type) : Type which has ex-
actly one constructor with arguments:

e a computable binary relation relation on A: 1eb : A -> A -> bool;
e proofs that leb is total, antisymmetric and transitive.

Such a single-constructor inductive type represents a dependent record. In this case
the record contains a computable binary relation and a proof that this relation is a
total order.

Hint. There is a special syntax for dependent records. Search Coq’s reference manual
(https://coq.inria.fr/distrib/current/refman/) for Record.

2. Define an element cto_nat of type ComputableTotalOrder nat.


https://coq.inria.fr/distrib/current/refman/

