
Łukasz Czajka Exercise sheet 10 Rocq

Exercise 1 (Forward reasoning).

Define a tactic fwd_modus_ponens which repeatedly looks for two hypotheses H1 : A,
H2 : A -> B and replaces H2 with H2' : B.

Exercise 2 (Arithmetic expressions).

Consider the following inductive type of arithmetic expressions.

Inductive aexpr :=
| Nval : nat -> aexpr
| Avar : string -> aexpr
| Aplus : aexpr -> aexpr -> aexpr
| Amul : aexpr -> aexpr -> aexpr.

Definition state := string -> nat.

Variables (Avar s) are identified by their string names (s).

1. Define a function aval : state -> aexpr -> nat which evaluates arithmetic ex-
pressions.

2. Define a function asimp : aexpr -> aexpr which (recursively) simplifies arithmetic
expressions by:

• replacing Aplus (Nval n1) (Nval n2) with Nval (n1 + n2),

• replacing Aplus (Nval 0) e and Aplus e (Nval 0) with e,

• replacing Amul (Nval n1) (Nval n2) with Nval (n1 * n2),

• replacing Amul (Nval 0) e and Amul e (Nval 0) with 0,

• replacing Amul (Nval 1) e and Amul e (Nval 1) with e.

For example:

asimp (Aplus (Nval 3) (Amul (Nval 0) (Avar "a"))) = Nval 3

3. Prove: forall s e, aval s (asimp e) = aval s e.

Hint. The imports from the standard library you may need are: String, Bool, Arith.
Try to use sauto as much as possible. It may be helpful to split up the definition of asimp
into several functions and separately prove helper lemmas about them.

1



Łukasz Czajka Exercise sheet 10 Rocq

Exercise 3 (Dependently typed functions).

Implement the following functions on lists which take an additional proof argument that
restricts the input values.

1. head : forall (A : Type) (l : list A), l <> [] -> A.

2. tail : forall (A : Type) (l : list A), l <> [] -> list A.

3. nth : forall (A : Type) (n : nat) (l : list A),
n < List.length l -> list A.

Exercise 4 (Computable total orders).

1. Define an inductive type ComputableTotalOrder (A : Type) : Type which has ex-
actly one constructor with arguments:

• a computable binary relation relation on A: leb : A -> A -> bool;

• proofs that leb is total, antisymmetric and transitive.

Such a single-constructor inductive type represents a dependent record. In this case
the record contains a computable binary relation and a proof that this relation is a
total order.

Hint. There is a special syntax for dependent records. Search Coq’s reference manual
(https://coq.inria.fr/distrib/current/refman/) for Record.

2. Define an element cto_nat of type ComputableTotalOrder nat.

2

https://coq.inria.fr/distrib/current/refman/

