
Ackermann’s function

ackermann 0 n = n + 1
ackermann (m + 1) 0 = ackermann m 1
ackermann (m + 1) (n + 1) = ackermann m (ackermann (m + 1) n)

iterate f 0 = \x -> x
iterate f (n + 1) = \x -> f (iterate f n x)

Theorem
ackermann (m + 1) n = iterate (ackermann m) (n + 1) 1

Proof.
By induction on n.
▶ Base case. We need to show

ackermann (m + 1) 0 = iterate (ackermann m) (0 + 1) 1.
But this follows from definitions by computation.
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