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What is this lecture about?

Coq

▶ and applications to program verification

Or: Coq for (functional) programmers with some background in logic (as
taught in a typical bachelor CS program).
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Program proof – motivation

We have all committed errors in our programs.
Some errors are graver than others.
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THERAC-25

Therac-25 was a computer-controlled radiation therapy machine produced
in 1982.

A software error caused a massive radiation overdose in at least six
incidents. People died.
Cause: a race condition.

Other critical software bugs in medical equipment: heart devices (2008),
infusion pumps (2015, 2019), . . . .
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Ariane 5

Ariane 5 was a $500 million commercial rocket built by the European
Space Agency.

On its first flight in 1996 it exploded about 40 seconds after takeoff.

Cause: integer overflow.
Other critical software bugs in spacecraft: NASA Mars Climate Orbiter
(1999), Japanese Hitomi satellite (2016), . . . .
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An old joke from the 1990s

Q: How many Pentium designers does it take to screw in a light bulb?

A: 1.99904274017, but that’s close enough for non-technical people.

6 / 24



An old joke from the 1990s

Q: How many Pentium designers does it take to screw in a light bulb?
A: 1.99904274017, but that’s close enough for non-technical people.

6 / 24



Pentium FDIV bug

A bug in floating-point division caused, under certain circumstances, the
result to be incorrect beyond the 4th digit.

Discovered in October 1994.
In December 1994 Intel offered to replace affected chips upon request.
Total cost: $457 million.
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Program proof – motivation

“Program testing can be used to show the presence of bugs, but never to show
their absence!” Edsger W. Dijkstra
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Rice’s theorem

Theorem (Rice)
Every non-trivial semantic property of programs is undecidable.
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Formal methods

Approximation: static program analysis.

▶ Answer: definitely satisfies a specific property, or maybe not.
▶ False alarms!
▶ Examples: data-flow analysis, abstract interpretation.
▶ Automated, applicable to large programs.

Abstraction: model checking.
▶ Verify a model of the system, not the system itself.
▶ Automated (mostly), applicable to medium-sized programs.

Interaction: proof assistants (this lecture).
▶ Requires a huge effort for real-world systems.
▶ Applicable to relatively small programs.
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Validation vs verification

Verification: does the implementation satisfy a given specification? Do
we build the thing right?

▶ A full machine-checked formal proof can certify (beyond any reasonable
doubt) that this is indeed the case.

Validation: is the specification right? Do we build the right thing?
▶ Formal proof does not directly help.
▶ BUT: writing a formal specification and proving the program correct with

respect to it forces you to think more thoroughly about the specification.
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A machine-checked formal proof

“Beware of bugs in the above code; I have only proved it correct, not tried
it.” Donald E. Knuth, 1977

▶ An out-of-context quote often overused to claim that “formal methods
don’t work”.

A reply: “And what else would you expect if you just wrote your proof on
a piece of paper?”

▶ Software correctness proofs vs proofs of mathematical theorems.

Another reply: “Yes, you also need to run and test it (validation)”
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A modern proof assistant

De Bruijn criterion: a small trusted kernel that checks simple proof
objects.

Everything else (interaction, partial type inference, proof and tactic
languages, decision procedures, . . . ) is untrusted (outside the kernel), but
produces proof objects to be independently checked by the kernel.
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How reliable is a machine-checked proof?

If you typed into a proof assistant a program correctness proof and the
proof assistant says your proof is OK, then you can be absolutely sure
your program will behave according to its specification.

▶ Assuming: you correctly formalised the specification, the program
representation in the proof assistant corresponds to your program (a
relatively small leap of faith), your compiler is implemented correctly (it
isn’t, unless it’s CompCert or CakeML), your operating system is
implemented correctly (it isn’t, unless it’s seL4), the proof assistant kernel
is implemented correctly (this can be formally verified!), the proof
assistant logic is consistent, the hardware is correct, cosmic rays didn’t
make your hardware malfunction when checking the proof, your eyes didn’t
malfunction looking at the screen, your brain didn’t malfunction
processing the neural signals form your eyes, . . .

In whatever you do, there are (implicit or explicit) assumptions!
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How reliable is a machine-checked proof?
From seL4 verified microkernel FAQ:

Q: Does seL4 have zero bugs?

A: The functional correctness proof states that, if the proof assumptions
are met, the seL4 kernel implementation has no deviations from its
specification. (. . . )
There may still be unexpected features in the specification and one or
more of the assumptions may not apply. The security properties may be
sufficient for what your system needs, but might not. (. . . )
So the answer to the question depends on what you understand a bug to
be. In the understanding of formal software verification (code implements
specification), the answer is yes. In the understanding of a general
software user, the answer is potentially, because there may still be
hardware bugs or proof assumptions unmet. For high assurance systems,
this is not a problem, because analysing hardware and proof assumptions
is much easier than analysing a large software system, the same hardware,
and test assumptions.

Source: https://docs.sel4.systems/projects/sel4/
frequently-asked-questions.html#does-sel4-have-zero-bugs.
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How reliable is a machine-checked proof?

Real software systems don’t exist in isolation.

Q: If I run seL4, is my system secure?
A: Not automatically, no. Security is a question that spans the whole
system, including its human parts. An OS kernel, verified or not, does not
automatically make a system secure. In fact, any system, no matter how
secure, can be used in insecure ways.
However, if used correctly, seL4 provides the system architect and user
with strong mechanisms to implement security policies, backed by specific
security theorems.
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How reliable is a machine-checked proof?

The purpose of formal methods is not to provide an “absolute” correctness
proof, but to substantially increase reliability.

17 / 24



Common confusion

interactive theorem prover (proof assistant)
̸=

(fully) automated theorem prover

18 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.

1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.

1968: Automath project (de Bruijn, Netherlands).
▶ proof checker based on the Curry-Howard correspondence: formulas as

types and proofs as programs,
▶ de Bruijn criterion (simple proof objects checked by a small kernel).

1972: LCF prover (Robin Milner, Stanford & Edinburgh).
▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).

1972: LCF prover (Robin Milner, Stanford & Edinburgh).
▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,

▶ no proof objects, but a small kernel implements inference rules and ML’s
type system ensures these are used correctly.

1970s: Mizar (Andrzej Trybulec, Poland).
▶ based on set theory, intended for mathematics formalisation by

mathematicians,
▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.

1970s: Mizar (Andrzej Trybulec, Poland).
▶ based on set theory, intended for mathematics formalisation by

mathematicians,
▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,

▶ as of today: has one of the largest libraries of formalised “mainstream”
mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1950s: first attempts at automated theorem proving.
1960s: pioneering proof checkers.
1968: Automath project (de Bruijn, Netherlands).

▶ proof checker based on the Curry-Howard correspondence: formulas as
types and proofs as programs,

▶ de Bruijn criterion (simple proof objects checked by a small kernel).
1972: LCF prover (Robin Milner, Stanford & Edinburgh).

▶ based on the Logic of Computable Functions by Dana Scott,
▶ no proof objects, but a small kernel implements inference rules and ML’s

type system ensures these are used correctly.
1970s: Mizar (Andrzej Trybulec, Poland).

▶ based on set theory, intended for mathematics formalisation by
mathematicians,

▶ declarative proof style,
▶ as of today: has one of the largest libraries of formalised “mainstream”

mathematics (MML – Mizar Mathematical Library).

19 / 24



Proof assistants timeline

1980s: NuPRL (Constable, Cornell).

▶ based on extensional Martin-Löf type theory, intended for program
verification.

1980s: HOL (Gordon, Cambridge).
▶ based on classical higher-order logic.
▶ LCF-style.

1986: Isabelle (Paulson & Nipkow, Cambridge & TU München).
▶ LCF-style framework for encoding logics,
▶ Isabelle/HOL, Isabelle/FOL, Isabelle/ZF, . . .

1989: Coq (Huet & Coquand, France).
▶ based on Coquand’s Calculus of Constructions,
▶ satisfies de Bruijn criterion.
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Proof assistants timeline

1990: ACL2 (Boyer & Moore & Kaufmann, University of Texas).

▶ based on Lisp + quantifier-free first-order logic with induction,
▶ a more interactive industrial-strength successor to the Nqthm

(Boyer-Moore) automated theorem prover.
1992: PVS (SRI International, USA).

▶ powerful automation, intended for industrial applications,
▶ no proof objects or small kernel.

1998: Intel hires John Harrison (author of HOL Light) to lead the formal
verification of floating-point arithmetic in Intel processors.
1999: Agda (Norell & Coquand, Sweden).

▶ dependently typed functional programming language based on Martin-Löf
type theory.
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Proof assistants timeline

2000s: Increasing use of proof assistants in hardware verification.

2005: Nqthm/ACL2 receives the ACM Software Systems Award.
2007: Idris (Brady, UK).

▶ general-purpose dependently typed functional programming language with
effects.

2008: formal proof (in Coq) of the Four Color Theorem (Gonthier et al,
France).
2008: CompCert – a verified (with Coq) optimising compiler for Clight
(Leroy et al, France).
2009: seL4 - a verified (with Isabelle/HOL) OS kernel (Data61,
Australia).
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Proof assistants timeline
2010s: Increasing use of proof assistants in verification of critical (parts
of) embedded software.

2013: Coq receives the ACM Software Systems Award.
2014: formal proof (in Isabelle/HOL and HOL Light) of the Kepler
conjecture (Hales et al).
2014: CakeML – a verified (with Isabelle/HOL) compiler for ML (Data61,
Australia).
2015: F* (Microsoft Research & Inria).

▶ general-purpose functional programming language with effects aimed at
program verification,

▶ combines automated and interactive proofs.
2016: mC2 (CertiKOS) – a verified concurrent OS kernel with
fine-grained locking (Yale University).
2018: Amazon Web Services hires John Harrison.
2017-202?: Project Everest (Microsoft Research & Inria).

▶ work in progress to create a verified HTTPS stack.
2021: Lean4 – a dependently typed programming language and theorem
prover based on the Calculus of Constructions.
2025: Coq renamed to Rocq.
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What to expect from this course?

Despite recent progress, full formal verification of realistic software still
requires a huge effort.

After finishing this course do not expect to be able to verify “real-world”
software written in mainstream programming languages.
After finishing this course do expect to be able to:

▶ write small functional programs in Coq (e.g., list sorting, priority queues,
balanced search trees), prove their correctness and extract them to OCaml
or Haskell,

▶ understand (some of) the theory behind Coq.
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