
Lecture 2: The Curry-Howard isomorphism

Łukasz Czajka

1 / 40

Predicate logic: syntax

Inductive definition of predicate logic formulas (for a fixed implicit
signature without function symbols).

· If x1, . . . , xn are individual variables and R is an n-ary predicate
(relation) symbol, then the atom R(x1, . . . , xn) is a formula.

· If φ and ψ are formulas, then φ ∨ ψ, φ ∧ ψ, φ→ ψ and ¬φ are
formulas.

· If φ is a formula and x is an individual variable, then ∀xφ and
∃xφ are formulas.

NOTE: Propositional variables may be represented by nullary
(0-ary) predicates.

2 / 40

Predicate logic: syntax

Inductive definition of predicate logic formulas (for a fixed implicit
signature without function symbols).

· If x1, . . . , xn are individual variables and R is an n-ary predicate
(relation) symbol, then the atom R(x1, . . . , xn) is a formula.

· If φ and ψ are formulas, then φ ∨ ψ, φ ∧ ψ, φ→ ψ and ¬φ are
formulas.

· If φ is a formula and x is an individual variable, then ∀xφ and
∃xφ are formulas.

NOTE: Propositional variables may be represented by nullary
(0-ary) predicates.

2 / 40

Predicate logic: syntax

Inductive definition of predicate logic formulas (for a fixed implicit
signature without function symbols).

· If x1, . . . , xn are individual variables and R is an n-ary predicate
(relation) symbol, then the atom R(x1, . . . , xn) is a formula.

· If φ and ψ are formulas, then φ ∨ ψ, φ ∧ ψ, φ→ ψ and ¬φ are
formulas.

· If φ is a formula and x is an individual variable, then ∀xφ and
∃xφ are formulas.

NOTE: Propositional variables may be represented by nullary
(0-ary) predicates.

2 / 40

Predicate logic: syntax

Inductive definition of predicate logic formulas (for a fixed implicit
signature without function symbols).

· If x1, . . . , xn are individual variables and R is an n-ary predicate
(relation) symbol, then the atom R(x1, . . . , xn) is a formula.

· If φ and ψ are formulas, then φ ∨ ψ, φ ∧ ψ, φ→ ψ and ¬φ are
formulas.

· If φ is a formula and x is an individual variable, then ∀xφ and
∃xφ are formulas.

NOTE: Propositional variables may be represented by nullary
(0-ary) predicates.

2 / 40

Predicate logic: syntax

Inductive definition of predicate logic formulas (for a fixed implicit
signature without function symbols).

· If x1, . . . , xn are individual variables and R is an n-ary predicate
(relation) symbol, then the atom R(x1, . . . , xn) is a formula.

· If φ and ψ are formulas, then φ ∨ ψ, φ ∧ ψ, φ→ ψ and ¬φ are
formulas.

· If φ is a formula and x is an individual variable, then ∀xφ and
∃xφ are formulas.

NOTE: Propositional variables may be represented by nullary
(0-ary) predicates.

2 / 40

Predicate logic: syntax

P → Q→ R

3 / 40

Predicate logic: syntax

P → (Q→ R)

4 / 40

Predicate logic: syntax

P ∨Q→ R

5 / 40

Predicate logic: syntax

(P ∨Q) → R

6 / 40

Predicate logic: syntax

∀xR(x) ∨ ∀x¬S(x)

7 / 40

Predicate logic: syntax

(∀xR(x)) ∨ (∀x¬S(x))

8 / 40

Predicate logic: the “dot” notation

∀x.R(x) ∨ S(x)

9 / 40

Predicate logic: the “dot” notation

∀x(R(x) ∨ S(x))

10 / 40

Predicate logic: free variables

Q(x) ∨ ∀x∃yR(x, y, z)

11 / 40

Predicate logic: free variables

Q(x) ∨ ∀x∃yR(x, y, z)

12 / 40

Predicate logic: variable scopes

∀x.∃xR(x, x) ∨Q(x)

13 / 40

Predicate logic: variable scopes

∀x.(∃yR(y, y)) ∨Q(x)

14 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.

· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.

· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.

· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.

· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.

· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.

· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Predicate logic: classical semantics
An interpretation I = (A, β) consists of a structure
A = (A,RA

1 , . . . , R
A
m) (over our fixed signature) and a

valuation β : Var → A of variables.

We define inductively when a formula φ is satisfied by an
interpretation I, notation I |= φ.

· I |= R(x1, . . . , xn) if (β(x1), . . . , β(xn)) ∈ RA.
· I |= ¬φ iff I ̸|= φ.
· I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
· I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2.
· I |= φ1 → φ2 iff I ̸|= φ1 or I |= φ2.
· I |= ∀xφ iff for all a ∈ A we have I[a/x] |= φ.
· I |= ∃xφ iff there exists a ∈ A such that I[a/x] |= φ.

A formula is (classically) valid (is a classical tautology) if it is
satisfied by every interpretation.

NOTE: For propositional formulas (without quantifiers and with
only nullary predicates) the above semantics is the same as
propositional truth-table semantics.

15 / 40

Intuitionistic logic: motivation

· In classical logic, the law of excluded middle

φ ∨ ¬φ

is valid.

· But in general we don’t know which of φ,¬φ holds!
· Similarly, we may be able to classicaly prove ∃xφ but still not be

able to provide any concrete element for which φ holds.

16 / 40

Intuitionistic logic: motivation

· In classical logic, the law of excluded middle

φ ∨ ¬φ

is valid.
· But in general we don’t know which of φ,¬φ holds!

· Similarly, we may be able to classicaly prove ∃xφ but still not be
able to provide any concrete element for which φ holds.

16 / 40

Intuitionistic logic: motivation

· In classical logic, the law of excluded middle

φ ∨ ¬φ

is valid.
· But in general we don’t know which of φ,¬φ holds!
· Similarly, we may be able to classicaly prove ∃xφ but still not be

able to provide any concrete element for which φ holds.

16 / 40

Intuitionistic logic: motivation

Theorem
There exist irrational numbers a, b such that ab is rational.

Proof.
The number

√
2
√
2

is either rational or irrational. If
√
2
√
2

is rational
then take a = b =

√
2. If

√
2
√
2

is irrational then (
√
2
√
2
)
√
2 =

√
2
2
= 2

is rational, so take a =
√
2
√
2

and b =
√
2.

17 / 40

Intuitionistic logic: motivation

Theorem
There exist irrational numbers a, b such that ab is rational.

Proof.
The number

√
2
√
2

is either rational or irrational. If
√
2
√
2

is rational
then take a = b =

√
2. If

√
2
√
2

is irrational then (
√
2
√
2
)
√
2 =

√
2
2
= 2

is rational, so take a =
√
2
√
2

and b =
√
2.

17 / 40

Intuitionistic logic

· Classical logic is about truth.

· Intuitionistic (constructive) logic is about constructibility.

18 / 40

Intuitionistic logic

· Classical logic is about truth.
· Intuitionistic (constructive) logic is about constructibility.

18 / 40

The three constructivists: Brouwer, Heyting, Kolmogorov

“It does not make sense to think of truth or falsity of a
mathematical statement independently of our knowledge
concerning the statement. A statement is true if we have a
proof of it, and false if we can show that the assumption
that there is a proof for the statement leads to a
contradiction.” L.E.J. Brouwer

“The idea of an existence of the mathematical entities
outside our mind should not enter into the
demonstrations.” A. Heyting

“In addition to theoretical logic, which systematises proof
schemata for theoretical truths, one can systematise proof
schemata for solutions to problems. (. . .) Intuitionistic
logic should rather be called the calculus of problems, since
its objects are in reality problems, rather than theoretical
propositions.” A. Kolmogorov

19 / 40

The three constructivists: Brouwer, Heyting, Kolmogorov

“It does not make sense to think of truth or falsity of a
mathematical statement independently of our knowledge
concerning the statement. A statement is true if we have a
proof of it, and false if we can show that the assumption
that there is a proof for the statement leads to a
contradiction.” L.E.J. Brouwer

“The idea of an existence of the mathematical entities
outside our mind should not enter into the
demonstrations.” A. Heyting

“In addition to theoretical logic, which systematises proof
schemata for theoretical truths, one can systematise proof
schemata for solutions to problems. (. . .) Intuitionistic
logic should rather be called the calculus of problems, since
its objects are in reality problems, rather than theoretical
propositions.” A. Kolmogorov

19 / 40

The three constructivists: Brouwer, Heyting, Kolmogorov

“It does not make sense to think of truth or falsity of a
mathematical statement independently of our knowledge
concerning the statement. A statement is true if we have a
proof of it, and false if we can show that the assumption
that there is a proof for the statement leads to a
contradiction.” L.E.J. Brouwer

“The idea of an existence of the mathematical entities
outside our mind should not enter into the
demonstrations.” A. Heyting

“In addition to theoretical logic, which systematises proof
schemata for theoretical truths, one can systematise proof
schemata for solutions to problems. (. . .) Intuitionistic
logic should rather be called the calculus of problems, since
its objects are in reality problems, rather than theoretical
propositions.” A. Kolmogorov

19 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.
· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).
· A proof of ∃xφ consists of an object a and a proof of φ(a)

¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.
· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).
· A proof of ∃xφ consists of an object a and a proof of φ(a)

¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.

· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof
of φi.

· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).
· A proof of ∃xφ consists of an object a and a proof of φ(a)

¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.

· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).
· A proof of ∃xφ consists of an object a and a proof of φ(a)

¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.
· There is no proof of ⊥ (falsity).

· A proof of ∀xφ is a method (constructive function) which
transforms any object a into a proof of φ(a).

· A proof of ∃xφ consists of an object a and a proof of φ(a)
¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.
· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).

· A proof of ∃xφ consists of an object a and a proof of φ(a)
¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.
· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).
· A proof of ∃xφ consists of an object a and a proof of φ(a)

¬φ is an abbreviation for φ→ ⊥.

20 / 40

The Brouwer-Heyting-Kolmogorov (BHK) interpretation

The BHK interpretation is an informal semantics for intuitionistic
logic.

· A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

· A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.
· A proof of φ1 ∨ φ2 consists of an indicator i ∈ {1, 2} and a proof

of φi.
· There is no proof of ⊥ (falsity).
· A proof of ∀xφ is a method (constructive function) which

transforms any object a into a proof of φ(a).
· A proof of ∃xφ consists of an object a and a proof of φ(a)

¬φ is an abbreviation for φ→ ⊥.

20 / 40

The BHK interpretation

P → P

The identity function is a function which transforms a proof of P into
a proof of P . It is thus a proof of the formula P → P .

(λp : P.p) : P → P

21 / 40

The BHK interpretation

P → P

The identity function is a function which transforms a proof of P into
a proof of P . It is thus a proof of the formula P → P .

(λp : P.p) : P → P

21 / 40

The BHK interpretation

P → Q→ P

One proof of this formula is the function which given a proof p of P
returns a constant function which ignores its argument and returns p.

(λp : P.λq : Q.p) : P → Q→ P

22 / 40

The BHK interpretation

P → Q→ P

One proof of this formula is the function which given a proof p of P
returns a constant function which ignores its argument and returns p.

(λp : P.λq : Q.p) : P → Q→ P

22 / 40

The BHK interpretation

P → (P → Q) → Q

One proof of this formula is the function which given a proof p of P
returns a function which given a function f transforming any proof of
P into a proof of Q, applies this function to p, returning f(p).

(λp : P.λf : P → Q.fp) : P → (P → Q) → P

23 / 40

The BHK interpretation

P → (P → Q) → Q

One proof of this formula is the function which given a proof p of P
returns a function which given a function f transforming any proof of
P into a proof of Q, applies this function to p, returning f(p).

(λp : P.λf : P → Q.fp) : P → (P → Q) → P

23 / 40

The BHK interpretation

Excluded middle:
P ∨ ¬P

In general, we cannot provide for an arbitrary P either a proof of P
or a function which transforms a proof of P into a proof of ⊥. It
seems then that P ∨ ¬P is not intuitionistically provable.

24 / 40

The BHK interpretation

Peirce’s law:
((P → Q) → P) → P

If we are given just a function which transforms a proof of P → Q
into a proof of P , then there doesn’t seem to be any way of using this
function to obtain a proof of P . To use the function, we would need
to construct a proof of P → Q, i.e., a function which converts any
proof of P into a proof of Q. This does not seem possible in general.
Hence, it seems Peirce’s law is not intuitionistically provable.

25 / 40

The BHK interpretation

NOTE: The BHK interpretation is informal, so the above arguments
do not conclusively establish if the formulas are intuitionistically
provable. Such arguments may nonetheless be helpful to quickly
determine whether intuitionistic provability is plausible.

26 / 40

Curry-Howard isomorphism

The Curry-Howard isomorphism is a formalisation of the BHK
interpretation in the lambda-calculus.

· Formulas are types.
· Proofs are lambda-terms (roughly: total functional programs).

27 / 40

Curry-Howard isomorphism

The Curry-Howard isomorphism is a formalisation of the BHK
interpretation in the lambda-calculus.

· Formulas are types.
· Proofs are lambda-terms (roughly: total functional programs).

27 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively. Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.
· Aside of these changes, the formulas (types) are exactly the

formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively. Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.
· Aside of these changes, the formulas (types) are exactly the

formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively. Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.
· Aside of these changes, the formulas (types) are exactly the

formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively.

Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.
· Aside of these changes, the formulas (types) are exactly the

formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively. Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.
· Aside of these changes, the formulas (types) are exactly the

formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively. Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.

· Aside of these changes, the formulas (types) are exactly the
formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: formulas are types
· In predicate logic there is a single implicit domain of

quantification: it contains all individual objects. In contrast, in
dependent type theory we always quantify over elements of an
explicitly given type.

· Already for the lambda-calculus presentation of intuitionistic
predicate logic, we allow different domains of quantification
A,B, . . . and include them in the syntax of quantifiers: ∀x : A.φ,
∃x : A.φ.

· Each individual variable x has a (globally) fixed domain. We
write x : A if the domain of x is A.

· Predicates now need a type signature, e.g., R : A→ B → Prop

means that R takes two arguments in domains A and B
respectively. Then R(x, y) is a valid formula only if x : A and
y : B.

· ⊥ is an atomic formula and we define ¬φ ≡ φ→ ⊥.
· Aside of these changes, the formulas (types) are exactly the

formulas of first-order logic.

28 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.

· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.

· Γ, X : φ is a notation for Γ ∪ {X : φ}.
· An individual term t is an individual variable (no function

symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity).

Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Curry-Howard isomorphism: proofs are lambda-terms

· We assume an infinite set of proof variables X1, X2, . . . distinct
from individual variables x, y, z, . . .

· A context Γ is a finite set of unique variable declarations X : φ.
· “unique” means: if X : φ and X : ψ are in Γ then φ = ψ.
· Γ, X : φ is a notation for Γ ∪ {X : φ}.

· An individual term t is an individual variable (no function
symbols for simplicity). Each individual term belongs to a unique
domain: we write t : A if the domain of t is A.

· A proof term M,N, . . . is a proof variable X, a lambda
abstraction λX : φ.M or λx : A.M , an application M1M2 or Mt,
a pair (M1,M2) or [t,M], an injection inlM or inrM , or a case
expression (details later).

· A judgement has the form Γ ⊢M : φ where Γ is a context, M is a
proof term, and φ is a formula.

· We now present in detail the proof terms and the typing rules.

29 / 40

Intermission: derivation rules

J1 . . . Jn
J

S

· If we have derived the judgements J1, . . . , Jn and the side
condition S holds, then we can derive the judgement J .

· Sometimes we write the side condition(s) above the line together
with the judgements J1, . . . , Jn.

30 / 40

Intermission: derivation rules

J1 . . . Jn
J

S

· If we have derived the judgements J1, . . . , Jn and the side
condition S holds, then we can derive the judgement J .

· Sometimes we write the side condition(s) above the line together
with the judgements J1, . . . , Jn.

30 / 40

Intermission: derivation trees

J3

J5
J4

J1 J2
J

· To derive a judgement J we build a derivation tree using the
derivation rules: each node is a valid application of a derivation
rule.

· At the leaves of the tree we need rules with no judgements above
the line.

31 / 40

Intermission: derivation trees

J3

J5
J4

J1 J2
J

· To derive a judgement J we build a derivation tree using the
derivation rules: each node is a valid application of a derivation
rule.

· At the leaves of the tree we need rules with no judgements above
the line.

31 / 40

Curry-Howard isomorphism

A proof of φ1 → φ2 is a method (constructive function) which
transforms any proof of φ1 into a proof of φ2.

Γ, X : φ1 ⊢M : φ2

Γ ⊢ (λX : φ1.M) : φ1 → φ2
(→I)

Γ ⊢M1 : φ→ ψ Γ ⊢M2 : φ

Γ ⊢M1M2 : ψ
(→E)

introduction (how to prove) elimination (how to use)

32 / 40

Curry-Howard isomorphism

A proof of φ1 ∧ φ2 consists of a proof of φ1 and a proof of φ2.

Γ ⊢M1 : φ1 Γ ⊢M2 : φ2

Γ ⊢ (M1,M2) : φ1 ∧ φ2
(∧I)

Γ ⊢M : φ1 ∧ φ2 Γ, X1 : φ1, X2 : φ2 ⊢ N : ψ

Γ ⊢ (caseM of (X1, X2) ⇒ N) : ψ
(∧E)

33 / 40

Curry-Howard isomorphism

A proof of φ1 ∨φ2 consists of an indicator i ∈ {1, 2} and a proof of φi.

Γ ⊢M : φ1

Γ ⊢ inlM : φ1 ∨ φ2
(∨I1)

Γ ⊢M : φ2

Γ ⊢ inrM : φ1 ∨ φ2
(∨I2)

Γ ⊢M : φ1 ∨ φ2 Γ, X1 : φ1 ⊢ N1 : ψ Γ, X2 : φ2 ⊢ N2 : ψ

Γ ⊢ (caseM of inlX1 ⇒ N1 | inrX2 ⇒ N2) : ψ
(∨E)

34 / 40

Curry-Howard isomorphism

There is no proof of ⊥.

Γ ⊢M : ⊥
Γ ⊢ (caseψM) : ψ

(⊥E)

35 / 40

Curry-Howard isomorphism

A proof of ∀x : A.φ is a method (constructive function) which
transforms any object t in A into a proof of φ(t).

Γ ⊢M : φ x : A x /∈ FV(Γ)

Γ ⊢ (λx : A.M) : ∀x : A.φ
(∀I)

Γ ⊢M : ∀x : A.φ t : A

Γ ⊢Mt : φ[t/x]
(∀E)

Note: FV(Γ) is the set of all object variables occuring free in one of the
formulas declared in Γ

36 / 40

Curry-Howard isomorphism

A proof of ∃x : A.φ consists of an object t in A and a proof of φ(t).

Γ ⊢M : φ[t/x] t : A x : A

Γ ⊢ [t,M] : ∃x : A.φ
(∃I)

Γ ⊢M : ∃x : A.φ Γ, X : φ ⊢ N : ψ x /∈ FV(Γ, ψ)

Γ ⊢ (caseM of [x,X] ⇒ N) : ψ
(∃E)

Note: FV(Γ, ψ) is the set of all object variables occuring free in one of the
formulas declared in Γ or in ψ

37 / 40

Predicate logic: intuitionistic natural deduction

Γ, X : φ ⊢ X : φ
(Ax)

Γ, X : φ1 ⊢ M : φ2

Γ ⊢ (λX : φ1.M) : φ1 → φ2
(→I)

Γ ⊢ M1 : φ → ψ Γ ⊢ M2 : φ

Γ ⊢ M1M2 : ψ
(→E)

Γ ⊢ M1 : φ1 Γ ⊢ M2 : φ2

Γ ⊢ (M1,M2) : φ1 ∧ φ2
(∧I)

Γ ⊢ M : φ1 ∧ φ2 Γ, X1 : φ1, X2 : φ2 ⊢ N : ψ

Γ ⊢ (caseM of (X1, X2) ⇒ N) : ψ
(∧E)

Γ ⊢ M : φ1

Γ ⊢ inlM : φ1 ∨ φ2
(∨I1)

Γ ⊢ M : φ2

Γ ⊢ inrM : φ1 ∨ φ2
(∨I2)

Γ ⊢ M : φ1 ∨ φ2 Γ, X1 : φ1 ⊢ N1 : ψ Γ, X2 : φ2 ⊢ N2 : ψ

Γ ⊢ (caseM of inlX1 ⇒ N1 | inrX2 ⇒ N2) : ψ
(∨E)

Γ ⊢ M : ⊥
Γ ⊢ (caseψ M) : ψ

(⊥E)

Γ ⊢ M : φ x : A x /∈ FV(Γ)

Γ ⊢ (λx : A.M) : ∀x : A.φ
(∀I)

Γ ⊢ M : ∀x : A.φ t : A

Γ ⊢ Mt : φ[t/x]
(∀E)

Γ ⊢ M : φ[t/x] t : A x : A

Γ ⊢ [t,M] : ∃x : A.φ
(∃I)

Γ ⊢ M : ∃x : A.φ Γ, X : φ ⊢ N : ψ x /∈ FV(Γ, ψ)

Γ ⊢ (caseM of [x,X] ⇒ N) : ψ
(∃E)

38 / 40

Predicate logic: classical natural deduction

Classical natural deduction is intuitionistic natural deduction
extended with any one of the following rules

:
· classical falsity elimination

Γ, X : ¬φ ⊢M : ⊥
Γ ⊢ ⟨X : ¬φ⟩M : φ

· excluded middle axiom

Γ ⊢ exmφ : φ ∨ ¬φ

· double negation axiom

Γ ⊢ dnegφ : ¬¬φ→ φ

However, with such a “naive” extension we lose the correspondence
between proofs and functional programs.

39 / 40

Predicate logic: classical natural deduction

Classical natural deduction is intuitionistic natural deduction
extended with any one of the following rules:

· classical falsity elimination

Γ, X : ¬φ ⊢M : ⊥
Γ ⊢ ⟨X : ¬φ⟩M : φ

· excluded middle axiom

Γ ⊢ exmφ : φ ∨ ¬φ

· double negation axiom

Γ ⊢ dnegφ : ¬¬φ→ φ

However, with such a “naive” extension we lose the correspondence
between proofs and functional programs.

39 / 40

Predicate logic: classical natural deduction

Classical natural deduction is intuitionistic natural deduction
extended with any one of the following rules:

· classical falsity elimination

Γ, X : ¬φ ⊢M : ⊥
Γ ⊢ ⟨X : ¬φ⟩M : φ

· excluded middle axiom

Γ ⊢ exmφ : φ ∨ ¬φ

· double negation axiom

Γ ⊢ dnegφ : ¬¬φ→ φ

However, with such a “naive” extension we lose the correspondence
between proofs and functional programs.

39 / 40

Predicate logic: classical natural deduction

Classical natural deduction is intuitionistic natural deduction
extended with any one of the following rules:

· classical falsity elimination

Γ, X : ¬φ ⊢M : ⊥
Γ ⊢ ⟨X : ¬φ⟩M : φ

· excluded middle axiom

Γ ⊢ exmφ : φ ∨ ¬φ

· double negation axiom

Γ ⊢ dnegφ : ¬¬φ→ φ

However, with such a “naive” extension we lose the correspondence
between proofs and functional programs.

39 / 40

Predicate logic: classical natural deduction

Classical natural deduction is intuitionistic natural deduction
extended with any one of the following rules:

· classical falsity elimination

Γ, X : ¬φ ⊢M : ⊥
Γ ⊢ ⟨X : ¬φ⟩M : φ

· excluded middle axiom

Γ ⊢ exmφ : φ ∨ ¬φ

· double negation axiom

Γ ⊢ dnegφ : ¬¬φ→ φ

However, with such a “naive” extension we lose the correspondence
between proofs and functional programs.

39 / 40

Predicate logic: classical natural deduction

· Classical natural deduction is sound and complete for classical
first-order semantics.

· A formula φ is a (classical) semantic consequence of a set of
formulas ∆, denoted ∆ |=c φ, if for every interpretation I such
that I |= ψ for each ψ ∈ ∆, we have I |= φ.

· Let |Γ| denote the set of formulas declared in the context Γ.
· Write Γ ⊢c M : φ if Γ ⊢M : φ may be derived in a classical

natural deduction system.

Theorem
Γ ⊢c M : φ for some M if and only if |Γ| |=c φ.

Conclusion: intuitionistic logic is a subsystem of classical logic with
a “natural” computational interpretation.

40 / 40

Predicate logic: classical natural deduction

· Classical natural deduction is sound and complete for classical
first-order semantics.

· A formula φ is a (classical) semantic consequence of a set of
formulas ∆, denoted ∆ |=c φ, if for every interpretation I such
that I |= ψ for each ψ ∈ ∆, we have I |= φ.

· Let |Γ| denote the set of formulas declared in the context Γ.
· Write Γ ⊢c M : φ if Γ ⊢M : φ may be derived in a classical

natural deduction system.

Theorem
Γ ⊢c M : φ for some M if and only if |Γ| |=c φ.

Conclusion: intuitionistic logic is a subsystem of classical logic with
a “natural” computational interpretation.

40 / 40

Predicate logic: classical natural deduction

· Classical natural deduction is sound and complete for classical
first-order semantics.

· A formula φ is a (classical) semantic consequence of a set of
formulas ∆, denoted ∆ |=c φ, if for every interpretation I such
that I |= ψ for each ψ ∈ ∆, we have I |= φ.

· Let |Γ| denote the set of formulas declared in the context Γ.

· Write Γ ⊢c M : φ if Γ ⊢M : φ may be derived in a classical
natural deduction system.

Theorem
Γ ⊢c M : φ for some M if and only if |Γ| |=c φ.

Conclusion: intuitionistic logic is a subsystem of classical logic with
a “natural” computational interpretation.

40 / 40

Predicate logic: classical natural deduction

· Classical natural deduction is sound and complete for classical
first-order semantics.

· A formula φ is a (classical) semantic consequence of a set of
formulas ∆, denoted ∆ |=c φ, if for every interpretation I such
that I |= ψ for each ψ ∈ ∆, we have I |= φ.

· Let |Γ| denote the set of formulas declared in the context Γ.
· Write Γ ⊢c M : φ if Γ ⊢M : φ may be derived in a classical

natural deduction system.

Theorem
Γ ⊢c M : φ for some M if and only if |Γ| |=c φ.

Conclusion: intuitionistic logic is a subsystem of classical logic with
a “natural” computational interpretation.

40 / 40

Predicate logic: classical natural deduction

· Classical natural deduction is sound and complete for classical
first-order semantics.

· A formula φ is a (classical) semantic consequence of a set of
formulas ∆, denoted ∆ |=c φ, if for every interpretation I such
that I |= ψ for each ψ ∈ ∆, we have I |= φ.

· Let |Γ| denote the set of formulas declared in the context Γ.
· Write Γ ⊢c M : φ if Γ ⊢M : φ may be derived in a classical

natural deduction system.

Theorem
Γ ⊢c M : φ for some M if and only if |Γ| |=c φ.

Conclusion: intuitionistic logic is a subsystem of classical logic with
a “natural” computational interpretation.

40 / 40

Predicate logic: classical natural deduction

· Classical natural deduction is sound and complete for classical
first-order semantics.

· A formula φ is a (classical) semantic consequence of a set of
formulas ∆, denoted ∆ |=c φ, if for every interpretation I such
that I |= ψ for each ψ ∈ ∆, we have I |= φ.

· Let |Γ| denote the set of formulas declared in the context Γ.
· Write Γ ⊢c M : φ if Γ ⊢M : φ may be derived in a classical

natural deduction system.

Theorem
Γ ⊢c M : φ for some M if and only if |Γ| |=c φ.

Conclusion: intuitionistic logic is a subsystem of classical logic with
a “natural” computational interpretation.

40 / 40

