Lecture 3: Higher-order logic

Łukasz Czajka

 \cdot In first-order logic there are function and predicate symbols, but no quantification over them.

- · In first-order logic there are function and predicate symbols, but no quantification over them.
- $\cdot \ \forall x R(f(x))$ is a first-order formula.

- · In first-order logic there are function and predicate symbols, but no quantification over them.
- $\cdot \forall x R(f(x))$ is a first-order formula.
- $\cdot \exists R \forall f \forall x R(f(x)) \text{ is not.}$

- · In first-order logic there are function and predicate symbols, but no quantification over them.
- $\cdot \forall x R(f(x))$ is a first-order formula.
- $\cdot \exists R \forall f \forall x R(f(x)) \text{ is not.}$
- · Second-order logic: quantification over first-order predicates is allowed.

- · In first-order logic there are function and predicate symbols, but no quantification over them.
- $\cdot \forall x R(f(x))$ is a first-order formula.
- $\cdot \exists R \forall f \forall x R(f(x)) \text{ is not.}$
- Second-order logic: quantification over first-order predicates is allowed.
- · Second-order predicates: e.g. $Q(R) := \forall xRx$.

- · In first-order logic there are function and predicate symbols, but no quantification over them.
- $\cdot \forall x R(f(x))$ is a first-order formula.
- $\cdot \exists R \forall f \forall x R(f(x)) \text{ is not.}$
- Second-order logic: quantification over first-order predicates is allowed.
- · Second-order predicates: e.g. $Q(R) := \forall x R x$.
- · Third-order logic: quantification over first- and second-order predicates allowed.

- · In first-order logic there are function and predicate symbols, but no quantification over them.
- $\cdot \forall x R(f(x))$ is a first-order formula.
- $\cdot \exists R \forall f \forall x R(f(x)) \text{ is not.}$
- Second-order logic: quantification over first-order predicates is allowed.
- · Second-order predicates: e.g. $Q(R) := \forall x R x$.
- · Third-order logic: quantification over first- and second-order predicates allowed.
- · Higher-order logic: why not go all the way up?

Definition

The object types (or domains) A, B, C are given by

$$\mathcal{D}$$
 ::= $\mathcal{B} \mid \mathtt{Prop} \mid \mathcal{D}
ightarrow \mathcal{D}$

where \mathcal{B} is a fixed set of <u>basic domains</u>.

Definition

The <u>object types</u> (or <u>domains</u>) A, B, C are given by

$$\mathcal{D}$$
 ::= $\mathcal{B} \mid \mathtt{Prop} \mid \mathcal{D}
ightarrow \mathcal{D}$

where \mathcal{B} is a fixed set of basic domains.

Examples (assuming nat, bool $\in \mathcal{B}$):

· first-order predicates: $nat \rightarrow Prop$, $bool \rightarrow nat \rightarrow Prop$;

Definition

The object types (or domains) A, B, C are given by

$$\mathcal{D}$$
 ::= $\mathcal{B} \mid \mathtt{Prop} \mid \mathcal{D}
ightarrow \mathcal{D}$

where \mathcal{B} is a fixed set of basic domains.

- · first-order predicates: $nat \rightarrow Prop$, $bool \rightarrow nat \rightarrow Prop$;
- first-order functions: bool \rightarrow bool, nat \rightarrow bool \rightarrow nat;

Definition

The <u>object types</u> (or <u>domains</u>) A, B, C are given by

$$\mathcal{D}$$
 ::= $\mathcal{B} \mid \mathtt{Prop} \mid \mathcal{D}
ightarrow \mathcal{D}$

where \mathcal{B} is a fixed set of basic domains.

- · first-order predicates: $nat \rightarrow Prop$, $bool \rightarrow nat \rightarrow Prop$;
- · first-order functions: bool \rightarrow bool, nat \rightarrow bool \rightarrow nat;
- $\begin{array}{l} \cdot \text{ higher-order predicates: } (\mathtt{nat} \to \mathtt{Prop}) \to \mathtt{Prop}; \\ (\mathtt{Prop} \to \mathtt{Prop}) \to \mathtt{Prop}; \end{array}$

Definition

The object types (or domains) A, B, C are given by

$$\mathcal{D}$$
 ::= $\mathcal{B} \mid \mathtt{Prop} \mid \mathcal{D}
ightarrow \mathcal{D}$

where \mathcal{B} is a fixed set of basic domains.

- · first-order predicates: $nat \rightarrow Prop$, $bool \rightarrow nat \rightarrow Prop$;
- · first-order functions: bool \rightarrow bool, nat \rightarrow bool \rightarrow nat;
- · higher-order predicates: $(\mathtt{nat} \to \mathtt{Prop}) \to \mathtt{Prop};$ $(\mathtt{Prop} \to \mathtt{Prop}) \to \mathtt{Prop};$
- · higher-order functions: $(\mathtt{nat} \to \mathtt{bool}) \to \mathtt{nat};$ $((\mathtt{bool} \to \mathtt{bool}) \to \mathtt{bool}) \to \mathtt{nat};$

Definition

The object types (or domains) A, B, C are given by

$$\mathcal{D}$$
 ::= $\mathcal{B} \mid \mathtt{Prop} \mid \mathcal{D}
ightarrow \mathcal{D}$

where \mathcal{B} is a fixed set of basic domains.

- · first-order predicates: $nat \rightarrow Prop$, $bool \rightarrow nat \rightarrow Prop$;
- · first-order functions: bool \rightarrow bool, nat \rightarrow bool \rightarrow nat;
- · higher-order predicates: $(\mathtt{nat} \to \mathtt{Prop}) \to \mathtt{Prop};$ $(\mathtt{Prop} \to \mathtt{Prop}) \to \mathtt{Prop};$
- · higher-order functions: $(\mathtt{nat} \to \mathtt{bool}) \to \mathtt{nat};$ $((\mathtt{bool} \to \mathtt{bool}) \to \mathtt{bool}) \to \mathtt{nat};$
- · functions with predicate arguments: (nat \rightarrow Prop) \rightarrow nat; Prop \rightarrow bool.

· An <u>object term</u> t is an object variable x, y, z, an application t_1t_2 , an abstraction $\lambda x : A.t'$, an implication $t_1 \Rightarrow t_2$, or a universal quantification $\forall x : A.t$.

- · An <u>object term</u> t is an object variable x, y, z, an application t_1t_2 , an abstraction $\lambda x : A.t'$, an implication $t_1 \Rightarrow t_2$, or a universal quantification $\forall x : A.t$.
- · An object context Γ is a finite set of unique declarations of the form x:A.

- · An <u>object term</u> t is an object variable x, y, z, an application t_1t_2 , an abstraction $\lambda x : A.t'$, an implication $t_1 \Rightarrow t_2$, or a universal quantification $\forall x : A.t$.
- · An object context Γ is a finite set of unique declarations of the form x : A. We write $\Gamma, x : A$ for $\Gamma \cup \{x : A\}$.

- · An <u>object term</u> t is an object variable x, y, z, an application t_1t_2 , an abstraction $\lambda x : A.t'$, an implication $t_1 \Rightarrow t_2$, or a universal quantification $\forall x : A.t$.
- · An <u>object context</u> Γ is a finite set of unique declarations of the form x : A. We write $\Gamma, x : A$ for $\Gamma \cup \{x : A\}$.
- · An object term t has type $A \in \mathcal{D}$ in Γ if $\Gamma \vdash t : A$ can be derived using the following rules.

$$\overline{\Gamma,x:A \vdash x:A}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A.t: A \to B} \qquad \frac{\Gamma \vdash t_1: A \to B \quad \Gamma \vdash t_2: A}{\Gamma \vdash t_1 t_2: B}$$

$$\frac{\Gamma \vdash \varphi : \mathtt{Prop} \quad \Gamma \vdash \psi : \mathtt{Prop}}{\Gamma \vdash \varphi \Rightarrow \psi : \mathtt{Prop}} \qquad \frac{\Gamma, x : A \vdash \varphi : \mathtt{Prop}}{\Gamma \vdash \forall x : A.\varphi : \mathtt{Prop}}$$

- · An <u>object term</u> t is an object variable x, y, z, an application t_1t_2 , an abstraction $\lambda x : A.t'$, an implication $t_1 \Rightarrow t_2$, or a universal quantification $\forall x : A.t$.
- · An object context Γ is a finite set of unique declarations of the form x : A. We write $\Gamma, x : A$ for $\Gamma \cup \{x : A\}$.
- · An object term t has type $A \in \mathcal{D}$ in Γ if $\Gamma \vdash t : A$ can be derived using the following rules.

$$\begin{array}{c} \overline{\Gamma,x:A\vdash x:A} \\ \\ \underline{\Gamma,x:A\vdash t:B} \\ \overline{\Gamma\vdash \lambda x:A.t:A\to B} \end{array} \qquad \begin{array}{c} \underline{\Gamma\vdash t_1:A\to B} \quad \Gamma\vdash t_2:A \\ \hline \Gamma\vdash t_1t_2:B \end{array}$$

$$\underline{\Gamma\vdash \varphi: \mathtt{Prop}} \quad \underline{\Gamma\vdash \psi: \mathtt{Prop}} \quad \underline{\Gamma,x:A\vdash \varphi: \mathtt{Prop}} \\ \overline{\Gamma\vdash \varphi\Rightarrow \psi: \mathtt{Prop}} \quad \overline{\Gamma\vdash \forall x:A.\varphi: \mathtt{Prop}} \end{array}$$

We consider only well-typed object terms.

- · An <u>object term</u> t is an object variable x, y, z, an application t_1t_2 , an abstraction $\lambda x : A.t'$, an implication $t_1 \Rightarrow t_2$, or a universal quantification $\forall x : A.t$.
- · An object context Γ is a finite set of unique declarations of the form x:A. We write $\Gamma, x:A$ for $\Gamma \cup \{x:A\}$.
- · An object term t has type $A \in \mathcal{D}$ in Γ if $\Gamma \vdash t : A$ can be derived using the following rules.

$$\overline{\Gamma,x:A\vdash x:A}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A.t: A \to B} \qquad \frac{\Gamma \vdash t_1: A \to B \quad \Gamma \vdash t_2: A}{\Gamma \vdash t_1 t_2: B}$$

$$\frac{\Gamma \vdash \varphi : \mathtt{Prop} \quad \Gamma \vdash \psi : \mathtt{Prop}}{\Gamma \vdash \varphi \Rightarrow \psi : \mathtt{Prop}} \qquad \frac{\Gamma, x : A \vdash \varphi : \mathtt{Prop}}{\Gamma \vdash \forall x : A.\varphi : \mathtt{Prop}}$$

We consider only well-typed object terms.

· A formula φ, ψ is an object term of type Prop.

Examples:

 $\cdot \ f:A\rightarrow A\vdash \lambda x:A\lambda y:B.f(fx):A\rightarrow B\rightarrow A;$

- $f: A \to A \vdash \lambda x : A\lambda y : B.f(fx) : A \to B \to A;$
- $\cdot \ f:A\to A \vdash \lambda x:A.(\lambda g:A\to A.g(fx))f:A\to A;$

- $f: A \to A \vdash \lambda x: A\lambda y: B.f(fx): A \to B \to A;$
- $f: A \to A \vdash \lambda x: A.(\lambda g: A \to A.g(fx))f: A \to A;$
- $f:A \to A, R:A \to \mathtt{Prop} \vdash \forall x:A.R(fx) \Rightarrow R(f(fx)):\mathtt{Prop};$

- $f: A \to A \vdash \lambda x: A\lambda y: B.f(fx): A \to B \to A;$
- $f: A \to A \vdash \lambda x: A.(\lambda g: A \to A.g(fx))f: A \to A;$
- $\cdot \ f:A \to A, R:A \to \mathtt{Prop} \vdash \forall x:A.R(fx) \Rightarrow R(f(fx)):\mathtt{Prop};$
- $\cdot R: (A \to B) \to \mathtt{Prop} \vdash \forall f: A \to B.Rf \Rightarrow R(\lambda x: A.fx) : \mathtt{Prop};$

- $f:A\to A\vdash \lambda x:A\lambda y:B.f(fx):A\to B\to A;$
- $f: A \to A \vdash \lambda x: A.(\lambda g: A \to A.g(fx))f: A \to A;$
- $\cdot \ f:A \to A, R:A \to \mathtt{Prop} \vdash \forall x:A.R(fx) \Rightarrow R(f(fx)):\mathtt{Prop};$
- $\cdot \ R: (A \to B) \to \mathtt{Prop} \vdash \forall f: A \to B. \\ Rf \Rightarrow R(\lambda x: A. fx) : \mathtt{Prop};$
- $\cdot x: A, y: A \vdash \forall R: A \rightarrow \texttt{Prop}.Rx \Rightarrow Ry: \texttt{Prop}.$

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

· β -reduction "implements" applying a function to an argument:

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

· Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- · The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \to_{\beta} \lambda x : A.x$.
- The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" syntactic extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

· β -reduction "implements" applying a function to an argument:

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" <u>syntactic</u> extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

• The relation $=_{\beta\eta}$ of $\beta\eta$ -equality is the least equivalence relation including β - and η -reduction.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- · The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" <u>syntactic</u> extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

- · The relation $=_{\beta\eta}$ of $\beta\eta$ -equality is the least equivalence relation including β and η -reduction.
- The relation \equiv of definitional equality (also called computational equality) is defined to be $\beta\eta$ -equality.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- · The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" <u>syntactic</u> extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

- · The relation $=_{\beta\eta}$ of $\beta\eta$ -equality is the least equivalence relation including β and η -reduction.
- The relation \equiv of definitional equality (also called <u>computational</u> equality) is defined to be $\beta\eta$ -equality.
 - · Definitional equality is different for different systems.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- · The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" <u>syntactic</u> extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

- The relation $=_{\beta\eta}$ of $\beta\eta$ -equality is the least equivalence relation including β and η -reduction.
- The relation \equiv of <u>definitional equality</u> (also called <u>computational equality</u>) is defined to be $\beta\eta$ -equality.
 - · Definitional equality is different for different systems.
 - Definitional equality is an equivalence relation compatible with the structure of terms.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- · The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" <u>syntactic</u> extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

- The relation $=_{\beta\eta}$ of $\beta\eta$ -equality is the least equivalence relation including β and η -reduction.
- The relation \equiv of definitional equality (also called computational equality) is defined to be $\beta\eta$ -equality.
 - · Definitional equality is different for different systems.
 - Definitional equality is an equivalence relation compatible with the structure of terms.
 - · E.g. if $t \equiv t'$ then $\lambda x : A.ftx \equiv \lambda x : A.ft'x$.

$$(\lambda x : A.t)t' \to_{\beta} t[t'/x]$$

- Example: $\lambda x : A.(\lambda y : A.y)x \rightarrow_{\beta} \lambda x : A.x$.
- The relation $=_{\beta}$ of β -equality is the least equivalence relation including β -reduction.
- · η -reduction "implements" <u>syntactic</u> extensionality of functions:

$$(\lambda x : A.tx) \to_{\eta} t$$
 if $x \notin FV(t)$

- The relation $=_{\beta\eta}$ of $\beta\eta$ -equality is the least equivalence relation including β and η -reduction.
- The relation \equiv of definitional equality (also called <u>computational</u> equality) is defined to be $\beta\eta$ -equality.
 - · Definitional equality is different for different systems.
 - Definitional equality is an equivalence relation compatible with the structure of terms.
 - E.g. if $t \equiv t'$ then $\lambda x : A.ftx \equiv \lambda x : A.ft'x$.
 - · Definitional equality is decidable.

Syntactic functional extensionality and η -reduction

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f, g: A \to B$ in Γ . Assume $ft \equiv gt$ for all t such that $\Gamma' \vdash t: A$ for some $\Gamma' \supseteq \Gamma$.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f, g: A \to B$ in Γ . Assume $ft \equiv gt$ for all t such that $\Gamma' \vdash t: A$ for some $\Gamma' \supseteq \Gamma$. Take a fresh variable $x \notin \mathrm{FV}(f, g, \Gamma)$ and let $\Gamma' = \Gamma, x: A$.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f,g:A\to B$ in Γ . Assume $ft\equiv gt$ for all t such that $\Gamma'\vdash t:A$ for some $\Gamma'\supseteq \Gamma$. Take a fresh variable $x\notin \mathrm{FV}(f,g,\Gamma)$ and let $\Gamma'=\Gamma,x:A$. Then $\Gamma'\vdash x:A$, so $fx\equiv gx$.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f,g:A\to B$ in Γ . Assume $ft\equiv gt$ for all t such that $\Gamma'\vdash t:A$ for some $\Gamma'\supseteq\Gamma$. Take a fresh variable $x\notin \mathrm{FV}(f,g,\Gamma)$ and let $\Gamma'=\Gamma,x:A$. Then $\Gamma'\vdash x:A$, so $fx\equiv gx$. Hence also $\lambda x:A.fx\equiv \lambda x:A.gx$.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f,g:A\to B$ in Γ . Assume $ft\equiv gt$ for all t such that $\Gamma'\vdash t:A$ for some $\Gamma'\supseteq \Gamma$. Take a fresh variable $x\notin \mathrm{FV}(f,g,\Gamma)$ and let $\Gamma'=\Gamma,x:A$. Then $\Gamma'\vdash x:A$, so $fx\equiv gx$. Hence also $\lambda x:A.fx\equiv \lambda x:A.gx$. But $\lambda x:A.fx\to_\eta f$ and $\lambda x:A.gx\to_\eta g$ (recall $x\notin \mathrm{FV}(f,g)$).

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f,g:A\to B$ in Γ . Assume $ft\equiv gt$ for all t such that $\Gamma'\vdash t:A$ for some $\Gamma'\supseteq\Gamma$. Take a fresh variable $x\notin \mathrm{FV}(f,g,\Gamma)$ and let $\Gamma'=\Gamma,x:A$. Then $\Gamma'\vdash x:A$, so $fx\equiv gx$. Hence also $\lambda x:A.fx\equiv \lambda x:A.gx$. But $\lambda x:A.fx\to_\eta f$ and $\lambda x:A.gx\to_\eta g$ (recall $x\notin \mathrm{FV}(f,g)$). Then $\lambda x:A.fx\equiv f$ and $\lambda x:A.gx\equiv g$ because \equiv includes η -reduction.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f,g:A\to B$ in Γ . Assume $ft\equiv gt$ for all t such that $\Gamma'\vdash t:A$ for some $\Gamma'\supseteq \Gamma$. Take a fresh variable $x\notin \mathrm{FV}(f,g,\Gamma)$ and let $\Gamma'=\Gamma,x:A$. Then $\Gamma'\vdash x:A$, so $fx\equiv gx$. Hence also $\lambda x:A.fx\equiv \lambda x:A.gx$. But $\lambda x:A.fx\to_\eta f$ and $\lambda x:A.gx\to_\eta g$ (recall $x\notin \mathrm{FV}(f,g)$). Then $\lambda x:A.fx\equiv f$ and $\lambda x:A.gx\equiv g$ because \equiv includes η -reduction. This implies $f\equiv g$.

Definition

Syntactic functional extensionality for Γ, A, B is the following (meta) statement:

· for any f, g with $\Gamma \vdash f : A \to B$ and $\Gamma \vdash g : A \to B$, if $ft \equiv gt$ for every t with $\Gamma' \vdash t : A$ for some $\Gamma' \supseteq \Gamma$, then $f \equiv g$.

Fact

If definitional equality includes η -reduction then syntactic functional extensionality holds.

Proof.

Let $f,g:A\to B$ in Γ . Assume $ft\equiv gt$ for all t such that $\Gamma'\vdash t:A$ for some $\Gamma'\supseteq \Gamma$. Take a fresh variable $x\notin \mathrm{FV}(f,g,\Gamma)$ and let $\Gamma'=\Gamma,x:A$. Then $\Gamma'\vdash x:A$, so $fx\equiv gx$. Hence also $\lambda x:A.fx\equiv \lambda x:A.gx$. But $\lambda x:A.fx\to_\eta f$ and $\lambda x:A.gx\to_\eta g$ (recall $x\notin \mathrm{FV}(f,g)$). Then $\lambda x:A.fx\equiv f$ and $\lambda x:A.gx\equiv g$ because \equiv includes η -reduction. This implies $f\equiv g$.

Trivially, if syntactic functional extensionality holds and definitional equality includes β -reduction, then it also includes η -reduction (exercise).

$$\overline{\Gamma \cup \{x:\tau\} \vdash x:\tau}$$

$$\frac{\Gamma \cup \{x : \tau\} \vdash t : \sigma}{\Gamma \vdash \lambda x : \tau . t : \tau \to \sigma} \qquad \frac{\Gamma \vdash t_1 : \tau \to \sigma}{\Gamma \vdash t_1 t_2 : \sigma}$$

$$\frac{\Gamma \cup \{x : \tau\} \vdash t : \sigma}{\Gamma \vdash \lambda x : \tau . t : \tau \to \sigma} \qquad \frac{\Gamma \vdash t_1 : \tau \to \sigma \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash t_1 t_2 : \sigma}$$

Simple types: $\mathcal{T} ::= \mathcal{B} \mid \mathcal{T} \to \mathcal{T}$ where \mathcal{B} is a fixed finite set of type constants.

$$\overline{\Gamma \cup \{x:\tau\} \vdash x:\tau}$$

$$\frac{\Gamma \cup \{x:\tau\} \vdash t:\sigma}{\Gamma \vdash \lambda x:\tau.t:\tau \to \sigma} \qquad \frac{\Gamma \vdash t_1:\tau \to \sigma \quad \Gamma \vdash t_2:\tau}{\Gamma \vdash t_1t_2:\sigma}$$

· β -reduction: $(\lambda x : \tau . t)t' \to_{\beta} t[t'/x]$.

$$\overline{\Gamma \cup \{x:\tau\} \vdash x:\tau}$$

$$\frac{\Gamma \cup \{x:\tau\} \vdash t:\sigma}{\Gamma \vdash \lambda x:\tau.t:\tau \to \sigma} \qquad \frac{\Gamma \vdash t_1:\tau \to \sigma \quad \Gamma \vdash t_2:\tau}{\Gamma \vdash t_1t_2:\sigma}$$

- · β -reduction: $(\lambda x : \tau . t)t' \to_{\beta} t[t'/x]$.
- · Subject reduction theorem: if $\Gamma \vdash t : \tau$ and $t \to_{\beta}^* t'$ then $\Gamma \vdash t' : \tau$.

$$\overline{\Gamma \cup \{x:\tau\} \vdash x:\tau}$$

$$\frac{\Gamma \cup \{x : \tau\} \vdash t : \sigma}{\Gamma \vdash \lambda x : \tau . t : \tau \to \sigma} \qquad \frac{\Gamma \vdash t_1 : \tau \to \sigma \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash t_1 t_2 : \sigma}$$

- · β -reduction: $(\lambda x : \tau . t)t' \to_{\beta} t[t'/x]$.
- · Subject reduction theorem: if $\Gamma \vdash t : \tau$ and $t \to_{\beta}^* t'$ then $\Gamma \vdash t' : \tau$.
- · Strong normalisation theorem: if $\Gamma \vdash t : \tau$ then every reduction sequence starting from t ends in a β -normal form (i.e., in a term with no β -redexes).

$$\overline{\Gamma \cup \{x:\tau\} \vdash x:\tau}$$

$$\frac{\Gamma \cup \{x : \tau\} \vdash t : \sigma}{\Gamma \vdash \lambda x : \tau . t : \tau \to \sigma} \qquad \frac{\Gamma \vdash t_1 : \tau \to \sigma \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash t_1 t_2 : \sigma}$$

- · β -reduction: $(\lambda x : \tau . t) t' \to_{\beta} t[t'/x]$.
- · Subject reduction theorem: if $\Gamma \vdash t : \tau$ and $t \to_{\beta}^* t'$ then $\Gamma \vdash t' : \tau$.
- · Strong normalisation theorem: if $\Gamma \vdash t : \tau$ then every reduction sequence starting from t ends in a β -normal form (i.e., in a term with no β -redexes).
- · Uniqueness of normal forms: if t_1, t_2 are in β -normal form and $t_1 =_{\beta} t_2$, then $t_1 = t_2$.

$$\overline{\Gamma \cup \{x:\tau\} \vdash x:\tau}$$

$$\frac{\Gamma \cup \{x : \tau\} \vdash t : \sigma}{\Gamma \vdash \lambda x : \tau . t : \tau \to \sigma} \qquad \frac{\Gamma \vdash t_1 : \tau \to \sigma \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash t_1 t_2 : \sigma}$$

- · β -reduction: $(\lambda x : \tau . t)t' \to_{\beta} t[t'/x]$.
- · Subject reduction theorem: if $\Gamma \vdash t : \tau$ and $t \to_{\beta}^* t'$ then $\Gamma \vdash t' : \tau$.
- · Strong normalisation theorem: if $\Gamma \vdash t : \tau$ then every reduction sequence starting from t ends in a β -normal form (i.e., in a term with no β -redexes).
- · Uniqueness of normal forms: if t_1, t_2 are in β -normal form and $t_1 =_{\beta} t_2$, then $t_1 = t_2$.
- · Exercise: β -equality on simply-typed terms is decidable.

Higher-order logic: proof terms

· A proof term M, N is a proof variable X, Y, Z, a lambda abstraction $\lambda X : \varphi M$ or $\lambda x : A.M$, or an application M_1M_2 or Mt.

Higher-order logic: proof terms

- · A proof term M, N is a proof variable X, Y, Z, a lambda abstraction $\lambda X : \varphi . M$ or $\lambda x : A.M$, or an application $M_1 M_2$ or Mt.
- · A proof context Δ is a finite set of unique declarations of the form $X:\varphi$.

Higher-order logic: proof terms

- · A proof term M, N is a proof variable X, Y, Z, a lambda abstraction $\lambda X : \varphi . M$ or $\lambda x : A.M$, or an application $M_1 M_2$ or Mt.
- · A proof context Δ is a finite set of unique declarations of the form $X:\varphi$.
- · A judgement has the form Γ ; $\Delta \vdash M : \varphi$.

Intermission: derivation rules

$$\frac{J_1 \quad \dots \quad J_n}{J} S$$

· If we have derived the judgements J_1, \ldots, J_n and the side condition S holds, then we can derive the judgement J.

Intermission: derivation rules

$$\frac{J_1 \quad \dots \quad J_n}{J} S$$

- · If we have derived the judgements J_1, \ldots, J_n and the side condition S holds, then we can derive the judgement J.
- · Sometimes we write the side condition(s) above the line together with the judgements J_1, \ldots, J_n .

Intermission: derivation trees

$$\frac{\overline{J_3} \quad \overline{J_5}}{\overline{J_4}} \quad \underline{J_2}$$

$$\overline{J}$$

 \cdot To derive a judgement J we build a derivation tree using the derivation rules: each node is a valid application of a derivation rule.

Intermission: derivation trees

$$\begin{array}{cc} \overline{J_3} & \overline{J_5} \\ \overline{J_4} & \overline{J_2} \\ \hline J & J \end{array}$$

- · To derive a judgement J we build a derivation tree using the derivation rules: each node is a valid application of a derivation rule.
- · At the leaves of the tree we need rules with no judgements above the line.

Intuitionistic higher-order logic: rules

Intuitionistic higher-order logic: example derivation

$$\frac{\overline{\Gamma; \Delta \vdash X_1 : \forall x : A.Px \Rightarrow Q} \quad \overline{\Gamma \vdash x : A}}{\underline{\Gamma; \Delta \vdash X_1 x : Px \Rightarrow Q}} \quad \frac{\overline{\Gamma; \Delta \vdash X_2 : \forall x : A.Px} \quad \overline{\Gamma \vdash x : A}}{\Gamma; \Delta \vdash X_2 x : Px}$$

- $\cdot \ \Gamma \quad = \quad P:A \to {\tt Prop}, \quad Q:{\tt Prop}, \quad x:A.$
- $\cdot \Delta = X_1 : \forall x : A.Px \Rightarrow Q, \quad X_2 : \forall x : A.Px.$

· A second-order predicate expressing the transitivity of a binary relation:

 $\mathtt{Trans} := \lambda R : A \to A \to \mathtt{Prop}. \forall xyz : A.Rxy \Rightarrow Ryz \Rightarrow Rxz$

· A second-order predicate expressing the transitivity of a binary relation:

$$\mathtt{Trans} := \lambda R : A \to A \to \mathtt{Prop}. \forall xyz : A.Rxy \Rightarrow Ryz \Rightarrow Rxz$$

· A binary relation R is included in S if for all x, y, Rxy implies Sxy:

$$\mathtt{Subrel} := \lambda RS : A \to A \to \mathtt{Prop}. \forall xy : A.Rxy \Rightarrow Sxy$$

· A second-order predicate expressing the transitivity of a binary relation:

$$\mathtt{Trans} := \lambda R : A \to A \to \mathtt{Prop}. \forall xyz : A.Rxy \Rightarrow Ryz \Rightarrow Rxz$$

· A binary relation R is included in S if for all x, y, Rxy implies Sxy:

$$\mathtt{Subrel} := \lambda RS : A \to A \to \mathtt{Prop}. \forall xy : A.Rxy \Rightarrow Sxy$$

• The transitive closure of a binary relation R is the least transitive relation including R.

· A second-order predicate expressing the transitivity of a binary relation:

$$\mathtt{Trans} := \lambda R : A \to A \to \mathtt{Prop}. \forall xyz : A.Rxy \Rightarrow Ryz \Rightarrow Rxz$$

· A binary relation R is included in S if for all x, y, Rxy implies Sxy:

$$\mathtt{Subrel} := \lambda RS : A \to A \to \mathtt{Prop}. \forall xy : A.Rxy \Rightarrow Sxy$$

• The transitive closure of a binary relation R is the least transitive relation including R. This can be defined as the intersection of all transitive relations including R:

$$\begin{split} \mathsf{TC} := \lambda R : A \to A \to \mathsf{Prop}. \\ \lambda xy : A. \forall S : A \to A \to \mathsf{Prop}. \\ \mathsf{Trans}(S) \Rightarrow \mathsf{Subrel}\, R\, S \Rightarrow Sxy \end{split}$$

$$\begin{split} \mathtt{TC} := \lambda R : A \to A \to \mathtt{Prop}. \lambda xy : A. \forall S : A \to A \to \mathtt{Prop}. \\ \mathtt{Trans}(S) \Rightarrow \mathtt{Subrel} \ R \ S \Rightarrow Sxy \end{split}$$

Exercise: for arbitrary $R: A \to A \to \text{Prop}$ prove that TC(R) is indeed the least transitive relation including R, i.e.,

· it is transitive:

$$\mathtt{Trans}(\mathtt{TC}(R))$$

 \cdot it includes R:

$$\operatorname{Subrel} R\left(\operatorname{TC}(R)\right)$$

· every other transitive relation which includes R also includes TC(R):

$$\forall S:A\rightarrow A\rightarrow \texttt{Prop.Trans}(S)\Rightarrow \texttt{Subrel}\ R\,S\Rightarrow \texttt{Subrel}\ (\texttt{TC}(R))\,S$$

Induction principle for natural numbers:

$$\forall P : \mathtt{nat} \to \mathtt{Prop}.P0 \Rightarrow (\forall n : \mathtt{nat}.Pn \Rightarrow P(Sn)) \Rightarrow \forall n : \mathtt{nat}.Pn$$

In higher-order logic all other connectives and equality may be defined using \forall and \Rightarrow .

· Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.

- · Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.
- · Falsity: $\bot := \forall P : \mathtt{Prop}.P.$

- · Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.
- · Falsity: $\bot := \forall P : \mathtt{Prop}.P.$
- · Conjunction: $\varphi \wedge \psi := \forall P : \text{Prop.}(\varphi \Rightarrow \psi \Rightarrow P) \Rightarrow P$.

- · Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.
- · Falsity: $\bot := \forall P : \mathtt{Prop}.P.$
- · Conjunction: $\varphi \wedge \psi := \forall P : \text{Prop.}(\varphi \Rightarrow \psi \Rightarrow P) \Rightarrow P$.
- · Disjunction: $\varphi \lor \psi := \forall P : \text{Prop.}(\varphi \Rightarrow P) \Rightarrow (\psi \Rightarrow P) \Rightarrow P$.

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be defined using \forall and \Rightarrow .

- · Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.
- · Falsity: $\bot := \forall P : \mathtt{Prop}.P.$
- · Conjunction: $\varphi \wedge \psi := \forall P : \text{Prop.}(\varphi \Rightarrow \psi \Rightarrow P) \Rightarrow P$.
- · Disjunction: $\varphi \lor \psi := \forall P : \texttt{Prop.}(\varphi \Rightarrow P) \Rightarrow (\psi \Rightarrow P) \Rightarrow P.$
- · Existential quantification:

$$\exists x: A.\varphi(x) := \forall P: \mathtt{Prop}. \forall x: A(\varphi(x) \Rightarrow P) \Rightarrow P.$$

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be defined using \forall and \Rightarrow .

- · Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.
- · Falsity: $\bot := \forall P : \mathtt{Prop}.P.$
- · Conjunction: $\varphi \wedge \psi := \forall P : \text{Prop.}(\varphi \Rightarrow \psi \Rightarrow P) \Rightarrow P$.
- · Disjunction: $\varphi \lor \psi := \forall P : \texttt{Prop.}(\varphi \Rightarrow P) \Rightarrow (\psi \Rightarrow P) \Rightarrow P.$
- · Existential quantification:
 - $\exists x: A.\varphi(x) := \forall P: \mathtt{Prop}. \forall x: A(\varphi(x) \Rightarrow P) \Rightarrow P.$
- · Leibniz equality on $A: x =_A y := \forall R: A \to \text{Prop.} Rx \Rightarrow Ry.$

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be defined using \forall and \Rightarrow .

- · Truth: $\top := \forall P : \mathtt{Prop}.P \Rightarrow P$.
- · Falsity: $\bot := \forall P : \mathtt{Prop}.P.$
- · Conjunction: $\varphi \wedge \psi := \forall P : \text{Prop.}(\varphi \Rightarrow \psi \Rightarrow P) \Rightarrow P$.
- · Disjunction: $\varphi \lor \psi := \forall P : \text{Prop.}(\varphi \Rightarrow P) \Rightarrow (\psi \Rightarrow P) \Rightarrow P.$
- · Existential quantification:
 - $\exists x: A.\varphi(x) := \forall P: \mathtt{Prop}. \forall x: A(\varphi(x) \Rightarrow P) \Rightarrow P.$
- · Leibniz equality on A: $x =_A y := \forall R : A \to \text{Prop.} Rx \Rightarrow Ry.$

The corresponding introduction and elimination rules are derivable.

Classical higher-order logic

Excluded middle axiom:

 $\forall P: \mathtt{Prop}.P \vee \neg P$

· Functional extensionality axiom (scheme):

$$\forall fg: A \to B. (\forall x: A. fx = gx) \Rightarrow f = g.$$

· Functional extensionality axiom (scheme):

$$\forall fg: A \to B. (\forall x: A. fx = gx) \Rightarrow f = g.$$

NOTE:

· Syntactic functional extensionality does <u>not</u> imply functional extensionality!

· Functional extensionality axiom (scheme):

$$\forall fg: A \to B. (\forall x: A. fx = gx) \Rightarrow f = g.$$

NOTE:

- Syntactic functional extensionality does <u>not</u> imply functional extensionality!
 - More precisely: that a formal system of logic satisfies syntactic functional extensionality (a <u>meta-theoretic</u> property!) does not imply that the functional extensionality axiom is provable in the system.

· Functional extensionality axiom (scheme):

$$\forall fg: A \to B. (\forall x: A. fx = gx) \Rightarrow f = g.$$

NOTE:

- Syntactic functional extensionality does <u>not</u> imply functional extensionality!
 - More precisely: that a formal system of logic satisfies syntactic functional extensionality (a meta-theoretic property!) does not imply that the functional extensionality axiom is provable in the system.
- Functional extensionality does not imply syntactic functional extensionality either!

· Functional extensionality axiom (scheme):

$$\forall fg: A \to B. (\forall x: A. fx = gx) \Rightarrow f = g.$$

NOTE:

- Syntactic functional extensionality does <u>not</u> imply functional extensionality!
 - More precisely: that a formal system of logic satisfies syntactic functional extensionality (a meta-theoretic property!) does not imply that the functional extensionality axiom is provable in the system.
- Functional extensionality does not imply syntactic functional extensionality either!
- · Propositional extensionality axiom:

$$\forall P_1P_2: \mathtt{Prop.}(P_1 \Leftrightarrow P_2) \Rightarrow P_1 =_{\mathtt{Prop}} P_2.$$

· Functional extensionality axiom (scheme):

$$\forall fg: A \to B. (\forall x: A. fx = gx) \Rightarrow f = g.$$

NOTE:

- · Syntactic functional extensionality does <u>not</u> imply functional extensionality!
 - More precisely: that a formal system of logic satisfies syntactic functional extensionality (a <u>meta-theoretic</u> property!) does not imply that the functional extensionality axiom is provable in the system.
- · Functional extensionality does not imply syntactic functional extensionality either!
- · Propositional extensionality axiom:

$$\forall P_1P_2: \mathtt{Prop.}(P_1 \Leftrightarrow P_2) \Rightarrow P_1 =_{\mathtt{Prop}} P_2.$$

· Predicate extensionality axiom (scheme):

$$\forall R_1 R_2 : A \rightarrow \text{Prop.}(\forall x : A.R_1 x \Leftrightarrow R_2 x) \Rightarrow R_1 = R_2.$$

Choice

Axiom of choice (scheme):

$$(\forall x:A.\exists y:B.Rxy)\Rightarrow \exists f:A\rightarrow B.\forall x:A.Rx(fx).$$

Church's Simple Type Theory

· Church's Simple Type Theory is essentially classical higher-order logic with extensionality and choice.

Church's Simple Type Theory

- · Church's Simple Type Theory is essentially classical higher-order logic with extensionality and choice.
- · Alonzo Church, "A formulation of the simple theory of types", JSL 1940.

Church's Simple Type Theory

- · Church's Simple Type Theory is essentially classical higher-order logic with extensionality and choice.
- · Alonzo Church, "A formulation of the simple theory of types", JSL 1940.
 - The simply-typed lambda-calculus originates from this paper, where it was used to define the object terms of Church's higher-order logic.

Relativised choice

Relativised axiom of choice:

$$(\forall x: A.Qx \Rightarrow \exists y: B.Rxy) \Rightarrow \exists f: A \rightarrow B. \forall x: A.Qx \Rightarrow Rx(fx).$$

Diaconescu's theorem

Theorem (Diaconescu)

In intuitionistic higher-order logic, the predicate extensionality axiom and the relativised axiom of choice together imply the excluded middle axiom.