Lecture 3: Higher-order logic

Fukasz Czajka

1/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

2/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.

2/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.
- JRVfVYxR(f(x)) is not.

2/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.
- JRVfVYxR(f(x)) is not.

- Second-order logic: quantification over first-order predicates is
allowed.

2/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.
- JRVfVYxR(f(x)) is not.

- Second-order logic: quantification over first-order predicates is
allowed.

- Second-order predicates: e.g. Q(R) := VzRuz.

2/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.
- JRVfVYxR(f(x)) is not.

- Second-order logic: quantification over first-order predicates is
allowed.

- Second-order predicates: e.g. Q(R) := VzRuz.

- Third-order logic: quantification over first- and second-order
predicates allowed.

2/23

Higher-order logic

- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.
- JRVfVYxR(f(x)) is not.

- Second-order logic: quantification over first-order predicates is
allowed.

- Second-order predicates: e.g. Q(R) := VzRuz.

- Third-order logic: quantification over first- and second-order
predicates allowed.

- Higher-order logic: why not go all the way up?

2/23

Higher-order logic: object types

Definition
The object types (or domains) A, B, C are given by

D = B|Prop|D—D

where B is a fixed set of basic domains.

3/23

Higher-order logic: object types

Definition
The object types (or domains) A, B, C are given by

D = B|Prop|D—D
where B is a fixed set of basic domains.

Examples (assuming nat,bool € B):

- first-order predicates: nat — Prop, bool — nat — Prop;

3/23

Higher-order logic: object types

Definition
The object types (or domains) A, B, C are given by

D = B|Prop|D—D
where B is a fixed set of basic domains.

Examples (assuming nat,bool € B):
- first-order predicates: nat — Prop, bool — nat — Prop;
- first-order functions: bool — bool, nat — bool — nat;

3/23

Higher-order logic: object types

Definition
The object types (or domains) A, B, C are given by

D = B|Prop|D—D
where B is a fixed set of basic domains.

Examples (assuming nat,bool € B):
- first-order predicates: nat — Prop, bool — nat — Prop;
- first-order functions: bool — bool, nat — bool — nat;

- higher-order predicates: (nat — Prop) — Prop;
(Prop — Prop) — Prop;

3/23

Higher-order logic: object types

Definition
The object types (or domains) A, B, C are given by

D = B|Prop|D—D
where B is a fixed set of basic domains.

Examples (assuming nat,bool € B):
- first-order predicates: nat — Prop, bool — nat — Prop;
- first-order functions: bool — bool, nat — bool — nat;

- higher-order predicates: (nat — Prop) — Prop;
(Prop — Prop) — Prop;

- higher-order functions: (nat — bool) — nat;
((bool — bool) — bool) — nat;

3/23

Higher-order logic: object types

Definition
The object types (or domains) A, B, C are given by

D = B|Prop|D—D
where B is a fixed set of basic domains.

Examples (assuming nat,bool € B):
- first-order predicates: nat — Prop, bool — nat — Prop;
- first-order functions: bool — bool, nat — bool — nat;

- higher-order predicates: (nat — Prop) — Prop;
(Prop — Prop) — Prop;

- higher-order functions: (nat — bool) — nat;
((bool — bool) — bool) — nat;

- functions with predicate arguments: (nat — Prop) — nat;
Prop — bool.

3/23

Higher-order logic: object terms

- An object term t is an object variable x, ¥, z, an application t;to,
an abstraction Az : A.t', an implication ¢; = t5, or a universal
quantification Vz : A.t.

4/23

Higher-order logic: object terms

- An object term t is an object variable x, ¥, z, an application t;to,
an abstraction Az : A.t', an implication ¢; = t5, or a universal
quantification Vz : A.t.

- An object context I' is a finite set of unique declarations of the
form z : A.

4/23

Higher-order logic: object terms

- An object term t is an object variable x, ¥, z, an application t;to,
an abstraction Az : A.t', an implication ¢; = t5, or a universal
quantification Vz : A.t.

- An object context I' is a finite set of unique declarations of the
form z: A. We write I,z : A for TU {x: A}.

4/23

Higher-order logic: object terms

- An object term t is an object variable x, ¥, z, an application t;to,
an abstraction Az : A.t', an implication ¢; = t5, or a universal
quantification Vz : A.t.

- An object context I' is a finite set of unique declarations of the
form z : A. We write I',z : A for T U {z : A}.

- An object term t has type A€ DinT'if I' - ¢ : A can be derived
using the following rules.

Fzx:AFzxz: A
I'z:AFt: B 'tt1:A— B Thty: A
I'tXe:At: A— B I'ttite : B

'y :Prop T'F 14 :Prop Ix: At ¢ :Prop
I'Fp=1:Prop I'FVz: A.p:Prop

4/23

Higher-order logic: object terms

- An object term t is an object variable x, ¥, z, an application t;to,
an abstraction Az : A.t', an implication ¢; = t5, or a universal
quantification Vz : A.t.

- An object context I' is a finite set of unique declarations of the
form z : A. We write I',z : A for T U {z : A}.

- An object term t has type A€ DinT'if I' - ¢ : A can be derived
using the following rules.

Fzx:AFzxz: A
I'z:AFt: B 'tt1:A— B Thty: A
I'tXe:At: A— B I'ttite : B

'y :Prop T'F 14 :Prop Ix: At ¢ :Prop
I'Fp=1:Prop I'FVz: A.p:Prop

We consider only well-typed object terms.

4/23

Higher-order logic: object terms

- An object term t is an object variable x, ¥, z, an application t;to,
an abstraction Az : A.t', an implication ¢; = t5, or a universal
quantification Vz : A.t.

- An object context I' is a finite set of unique declarations of the
form z : A. We write I',z : A for T U {z : A}.

- An object term t has type A€ DinT'if I' - ¢ : A can be derived
using the following rules.

Fzx:AFzxz: A
I'z:AFt: B 'tt1:A— B Thty: A
I'tXe:At: A— B I'ttite : B

'y :Prop T'F 14 :Prop Ix: At ¢ :Prop
I'Fp=1:Prop I'FVz: A.p:Prop

We consider only well-typed object terms.
- A formula ¢, 1 is an object term of type Prop.

4/23

Higher-order logic: object terms

Examples:
fiA—= AR Xz Ay B.f(fz): A— B — A

5/23

Higher-order logic: object terms

Examples:
fiA—= AR Xz Ay B.f(fz): A— B — A
cfi A=A X A(Ng: A— Ag(fx))f: A— A

5/23

Higher-order logic: object terms

Examples:
- frA—= A Xz Ay : B.f(fx): A— B — A;
cfi A=A X A(Ng: A— Ag(fx))f: A— A
- fiA—= A R: A—ProphkVz: AR(fx) = R(f(fz)) : Prop;

5/23

Higher-order logic: object terms

Examples:
- frA—= A Xz Ay : B.f(fx): A— B — A;
cfi A=A X A(Ng: A— Ag(fx))f: A— A
- fiA—= A R: A—ProphkVz: AR(fx) = R(f(fz)) : Prop;
- R:(A— B) —»PropFVf:A— B.Rf = R(Ax: A.fx) : Prop;

5/23

Higher-order logic: object terms

Examples:
- frA—= A Xz Ay : B.f(fx): A— B — A;
cfi A=A X A(Ng: A— Ag(fx))f: A— A
- fiA—= A R: A—ProphkVz: AR(fx) = R(f(fz)) : Prop;
- R:(A— B) —»PropFVf:A— B.Rf = R(Ax: A.fx) : Prop;
-x: Ay AFVR: A — Prop.Rx = Ry : Prop.

5/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:

Az : At)t' —p tlt')z

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:

Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.
- The relation =g of B-equality is the least equivalence relation
including S-reduction.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z
- Example: Az : A.(\y : Ay)x —p A\x : A.z.

- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:

(Az: Adtx) =, t if x ¢ FV(t)

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.

- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.
- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.

- The relation = of definitional equality (also called computational
equality) is defined to be Sn-equality.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.
- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.
- The relation = of definitional equality (also called computational
equality) is defined to be Sn-equality.
- Definitional equality is different for different systems.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.
- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.

- The relation = of definitional equality (also called computational
equality) is defined to be Sn-equality.

- Definitional equality is different for different systems.
- Definitional equality is an equivalence relation compatible with
the structure of terms.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.
- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.
- The relation = of definitional equality (also called computational
equality) is defined to be Sn-equality.
- Definitional equality is different for different systems.

- Definitional equality is an equivalence relation compatible with
the structure of terms.

- E.g. ift =t then Az : A.ftz = Az : A.ft'z.

6/23

Higher-order logic: computation

- B-reduction “implements” applying a function to an argument:
Az : At)t' —p tlt')z

- Example: Az : A.(\y : Ay)x —p A\x : A.z.
- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.

- The relation = of definitional equality (also called computational
equality) is defined to be Sn-equality.

- Definitional equality is different for different systems.
- Definitional equality is an equivalence relation compatible with
the structure of terms.
- E.g. ift =t then Az : A.ftz = Az : A.ft'z.
- Definitional equality is decidable.

6/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

7/23

Syntactic functional extensionality and n-reduction
Definition

Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.
Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T.

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let

I"=TI,z: A

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A ThenI"Fz: A, so fx = gzx.

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A. Then IV F x: A, so fz = gx. Hence also

A Afe =Mz Agax.

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A. Then IV F x: A, so fz = gx. Hence also

A Afr=Ar: Age. But A\ : A.fr —, fand Az : A.gr —, g
(recall x ¢ FV(f,g)).

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A. Then IV F x: A, so fz = gx. Hence also

A Afr=Ar: Age. But A\ : A.fr —, fand Az : A.gr —, g
(recall z ¢ FV(f,g)). Then Az : A.fr = f and Mz : Agr =g

because = includes n-reduction.

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A. Then IV F x: A, so fz = gx. Hence also

A Afr=Ar: Age. But A\ : A.fr —, fand Az : A.gr —, g
(recall z ¢ FV(f,g)). Then Az : A.fr = f and Mz : Agr =g

because = includes n-reduction. This implies f = g. O

7/23

Syntactic functional extensionality and n-reduction

Definition
Syntactic functional extensionality for T', A, B is the following (meta)
statement:
- forany f,gwithT'F f: A— BandI'tg: A— B, if ft = gt for
every t with IV ¢ : A for some IV D T, then f = g.

Fact
If definitional equality includes n-reduction then syntactic functional
extensionality holds.

Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A. Then IV F x: A, so fz = gx. Hence also

A Afr=Ar: Age. But A\ : A.fr —, fand Az : A.gr —, g
(recall z ¢ FV(f,g)). Then Az : A.fr = f and Mz : Agr =g

because = includes n-reduction. This implies f = g. O
Trivially, if syntactic functional extensionality holds and definitional
equality includes S-reduction, then it also includes n-reduction

(exercise). .

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type
constants.

8/23

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type
constants.

Fruf{z:7tkrao:7

Fruf{z:r}kt:o Ptty:7—0 Thig:T
I'FXe:7t:7—0 T'Etity: o

8/23

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type

constants.
Fruf{z:7tkrao:7
Fruf{z:r}kt:o Ptty:7—0 Thig:T
I'FXe:7t:7—0 T'Etity: o

- B-reduction: (Ax : T.t)t’ —g t[t'/z].

8/23

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type

constants.
Fruf{z:7tkrao:7
Frv{z:7}kt:o I'tt1:7—0 T'hitg:T
I'FXe:7t:7—0 T'Etity: o

- B-reduction: (Ax : T.t)t’ —g t[t'/z].
- Subject reduction theorem: if I' -¢ : 7 and ¢ =7} t/ then ¢ : 7.

8/23

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type
constants.

Fruf{z:7tkrao:7

Fruf{z:r}kt:o Ptty:7—0 Thig:T
I'FXe:7t:7—0 T'Etity: o

- B-reduction: (Ax : T.t)t’ —g t[t'/z].
- Subject reduction theorem: if I' -¢ : 7 and ¢ =7} t/ then ¢ : 7.

- Strong normalisation theorem: if I' ¢ : 7 then every reduction
sequence starting from ¢ ends in a S-normal form (i.e., in a term
with no S-redexes).

8/23

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type
constants.

Fruf{z:7tkrao:7

Fruf{z:r}kt:o Ptty:7—0 Thig:T
I'FXe:7t:7—0 T'Etity: o

- B-reduction: (Ax : T.t)t’ —g t[t'/z].
- Subject reduction theorem: if I' -¢ : 7 and ¢ =7} t/ then ¢ : 7.

- Strong normalisation theorem: if I' ¢ : 7 then every reduction
sequence starting from ¢ ends in a S-normal form (i.e., in a term
with no S-redexes).

- Uniqueness of normal forms: if ¢1, ¢ are in S-normal form and
tl =8 tg, then tl = tg.

8/23

Intermission: the simply-typed lambda-calculus

Simple types: T ::= B | T — T where B is a fixed finite set of type
constants.

Fruf{z:7tkrao:7

Fruf{z:r}kt:o Ptty:7—0 Thig:T
I'FXe:7t:7—0 T'Etity: o

- B-reduction: (Ax : T.t)t’ —g t[t'/z].
- Subject reduction theorem: if I' -¢ : 7 and ¢ =7} t/ then ¢ : 7.

- Strong normalisation theorem: if I' ¢ : 7 then every reduction
sequence starting from ¢ ends in a S-normal form (i.e., in a term
with no S-redexes).

- Uniqueness of normal forms: if ¢1, ¢ are in S-normal form and
tl =8 tg, then tl = tg.
- Exercise: (-equality on simply-typed terms is decidable.

8/23

Higher-order logic: proof terms

- A proof term M, N is a proof variable X,Y, Z, a lambda
abstraction AX : p.M or Ax : A.M, or an application M; M or
Mt.

9/23

Higher-order logic: proof terms

- A proof term M, N is a proof variable X,Y, Z, a lambda
abstraction AX : p.M or Ax : A.M, or an application M; M or
Mt.

- A proof context A is a finite set of unique declarations of the
form X : .

9/23

Higher-order logic: proof terms

- A proof term M, N is a proof variable X,Y, Z, a lambda
abstraction AX : p.M or Ax : A.M, or an application M; M or
Mt.

- A proof context A is a finite set of unique declarations of the
form X : .

- A judgement has the form I'; A+ M : .

9/23

Intermission: derivation rules

- If we have derived the judgements Ji, ..., J, and the side
condition S holds, then we can derive the judgement .J.

10 /23

Intermission: derivation rules

Joooo Iy

- If we have derived the judgements Ji, ..., J, and the side
condition S holds, then we can derive the judgement .J.

- Sometimes we write the side condition(s) above the line together
with the judgements Ji,..., J,.

10 /23

Intermission: derivation trees

- To derive a judgement J we build a derivation tree using the
derivation rules: each node is a valid application of a derivation

rule.

11 /23

Intermission: derivation trees

- To derive a judgement J we build a derivation tree using the
derivation rules: each node is a valid application of a derivation
rule.

- At the leaves of the tree we need rules with no judgements above
the line.

11 /23

Intuitionistic higher-order logic: rules

NAX: pFXip M

A X M:o (=1) AEM: =1 F;AI—N:@(
DAFAMX o M:p=1 A MN 9

=E)

Tz: A AFM:o x¢ FV(A) VI AFM:Ve: A THt:A

VE
AR : AM Vo : A (v1) Iy A Mt p[t/x] (VE)

AFM:p T'E¢:Prop =1
AEM v

(conv)

12 /23

Intuitionistic higher-order logic: example derivation

AR Xy:Ve:APx=Q Thz:A T5AFXy:Ve:APx ThHz: A
AR Xz Per=Q AR Xox: Px
AR X jz(Xex) : Q

-I' = P:A—Prop, Q:Prop, z:A.
A = X;:Vzx:APr=Q, Xs:Vx:APz

13 /23

Higher-order logic: expressiveness

- A second-order predicate expressing the transitivity of a binary
relation:

Trans := AR: A — A — Prop.Vayz : A.Rxy = Ryz = Rxz

14 /23

Higher-order logic: expressiveness

- A second-order predicate expressing the transitivity of a binary
relation:

Trans := AR: A — A — Prop.Vayz : A.Rxy = Ryz = Rxz

- A binary relation R is included in S if for all z,y, Rzy implies
Szy:

Subrel := ARS: A — A — Prop.Vay : A.Rxy = Szy

14 /23

Higher-order logic: expressiveness

- A second-order predicate expressing the transitivity of a binary
relation:

Trans := AR: A — A — Prop.Vayz : A.Rxy = Ryz = Rxz

- A binary relation R is included in S if for all z,y, Rzy implies
Szy:

Subrel := ARS: A — A — Prop.Vay : A.Rxy = Szy

- The transitive closure of a binary relation R is the least transitive
relation including R.

14 /23

Higher-order logic: expressiveness
- A second-order predicate expressing the transitivity of a binary
relation:

Trans := AR: A — A — Prop.Vayz : A.Rxy = Ryz = Rxz

- A binary relation R is included in S if for all z,y, Rxy implies
Szy:

Subrel := ARS: A — A — Prop.Vay : A.Rxy = Szy

- The transitive closure of a binary relation R is the least transitive
relation including R. This can be defined as the intersection of all
transitive relations including R:

TC:=AR:A— A — PropA\zy: AVS:A— A — Prop.
Trans(S) = Subrel RS = Szy

14 /23

Higher-order logic: expressiveness

TC:=AR:A— A — PropAxy: AVS: A— A — Prop.
Trans(S) = Subrel RS = Suzy

Exercise: for arbitrary R : A — A — Prop prove that TC(R) is indeed
the least transitive relation including R, i.e.,

- it is transitive:
Trans(TC(R))

- it includes R:
Subrel R (TC(R))

- every other transitive relation which includes R also
includes TC(R):

VS : A — A — Prop.Trans(S) = Subrel RS = Subrel (TC(R)) S

15 /23

Higher-order logic: expressiveness

Induction principle for natural numbers:

VP :nat — Prop.P0 = (Vn : nat.Pn = P(Sn)) = Vn :nat.Pn

16 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.
- Falsity: 1 :=VP : Prop.P.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.
- Falsity: 1 :=VP : Prop.P.
- Conjunction: ¢ Ay :=VP :Prop.(¢ = ¢ = P) = P.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.

- Falsity: 1 :=VP : Prop.P.

- Conjunction: ¢ Ay :=VP :Prop.(¢ = ¢ = P) = P.

- Disjunction: ¢ V¢ := VP : Prop.(¢p = P) = (p = P) = P.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.

- Falsity: 1 :=VP : Prop.P.

- Conjunction: ¢ Ay :=VP :Prop.(¢ = ¢ = P) = P.

- Disjunction: ¢ V¢ := VP : Prop.(¢p = P) = (p = P) = P.

- Existential quantification:
Jz: A.p(x) := VP : Prop.Vz : A(p(x) = P) = P.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.
- Falsity: 1 :=VP : Prop.P.
- Conjunction: ¢ Ay :=VP :Prop.(¢ = ¢ = P) = P.
- Disjunction: ¢ V¢ := VP : Prop.(¢p = P) = (p = P) = P.
- Existential quantification:
Jz: A.p(x) := VP : Prop.Vz : A(p(x) = P) = P.
- Leibniz equality on A: z =4 y :=VR: A — Prop.Rx = Ry.

17 /23

Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.
- Falsity: 1 :=VP : Prop.P.
- Conjunction: ¢ Ay :=VP :Prop.(¢ = ¢ = P) = P.
- Disjunction: ¢ V¢ := VP : Prop.(¢p = P) = (p = P) = P.
- Existential quantification:
Jz: A.p(x) := VP : Prop.Vz : A(p(x) = P) = P.
- Leibniz equality on A: z =4 y :=VR: A — Prop.Rx = Ry.

The corresponding introduction and elimination rules are derivable.

17 /23

Classical higher-order logic

Excluded middle axiom:

VP :Prop.PV —P

18 /23

Extensionality

- Functional extensionality axiom (scheme):

Vfg: A— B.(Vz: A.fr=gz)= f=g.

19 /23

Extensionality
- Functional extensionality axiom (scheme):
Vfg: A— B.(Vz: A.fr=gz)= f=g.
NOTE:

- Syntactic functional extensionality does not imply functional
extensionality!

19 /23

Extensionality

- Functional extensionality axiom (scheme):
Vfg: A— B.(Vz: A.fr=gz)= f=g.
NOTE:

- Syntactic functional extensionality does not imply functional
extensionality! T
- More precisely: that a formal system of logic satisfies syntactic
functional extensionality (a meta-theoretic property!) does not
imply that the functional extensionality axiom is provable in the
system.

19 /23

Extensionality

- Functional extensionality axiom (scheme):
Vfg: A— B.(Vz: A.fr=gz)= f=g.
NOTE:

- Syntactic functional extensionality does not imply functional
extensionality!

- More precisely: that a formal system of logic satisfies syntactic
functional extensionality (a meta-theoretic property!) does not
imply that the functional extensionality axiom is provable in the
system.

- Functional extensionality does not imply syntactic functional
extensionality either!

19 /23

Extensionality

- Functional extensionality axiom (scheme):
Vfg: A— B.(Vz: A.fr=gz)= f=g.
NOTE:

- Syntactic functional extensionality does not imply functional
extensionality!

- More precisely: that a formal system of logic satisfies syntactic
functional extensionality (a meta-theoretic property!) does not
imply that the functional extensionality axiom is provable in the
system.

- Functional extensionality does not imply syntactic functional
extensionality either!

- Propositional extensionality axiom:

Vplpg : PI‘Op.(Pl = P2) = Pl —Prop P2'

19 /23

Extensionality

- Functional extensionality axiom (scheme):
Vfg: A— B.(Vz: A.fr=gz)= f=g.
NOTE:

- Syntactic functional extensionality does not imply functional
extensionality! T
- More precisely: that a formal system of logic satisfies syntactic
functional extensionality (a meta-theoretic property!) does not
imply that the functional extensionality axiom is provable in the
system.

- Functional extensionality does not imply syntactic functional
extensionality either!

- Propositional extensionality axiom:
Vplpg : PI‘Op.(Pl = P2) = Pl =Prop P2.
- Predicate extensionality axiom (scheme):

VRiRy: A— Prop.(Vx ARz & RQI) = R1 = Rs.

19 /23

Choice

Axiom of choice (scheme):

(Vx: AJy: B.Rxy) = 3f : A— BVx: A Rzx(fzx).

20 /23

Church’s Simple Type Theory

- Church’s Simple Type Theory is essentially classical higher-order
logic with extensionality and choice.

21 /23

Church’s Simple Type Theory

- Church’s Simple Type Theory is essentially classical higher-order
logic with extensionality and choice.

- Alonzo Church, “A formulation of the simple theory of types”,
JSL 1940.

21 /23

Church’s Simple Type Theory

- Church’s Simple Type Theory is essentially classical higher-order
logic with extensionality and choice.
- Alonzo Church, “A formulation of the simple theory of types”,
JSL 1940.
- The simply-typed lambda-calculus originates from this paper,
where it was used to define the object terms of Church’s
higher-order logic.

21 /23

Relativised choice

Relativised axiom of choice:

(Va: A.Qr = Jy: B.Rxy) = 3f : A — BVx: A.Qr = Rx(fx).

22 /23

Diaconescu’s theorem

Theorem (Diaconescu)

In intuitionistic higher-order logic, the predicate extensionality axiom

and the relativised axiom of choice together imply the excluded middle
axiom.

23 /23

