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- In first-order logic there are function and predicate symbols, but
no quantification over them.

- VeR(f(z)) is a first-order formula.
- JRVfVYxR(f(x)) is not.

- Second-order logic: quantification over first-order predicates is
allowed.

- Second-order predicates: e.g. Q(R) := VzRuz.

- Third-order logic: quantification over first- and second-order
predicates allowed.

- Higher-order logic: why not go all the way up?
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- higher-order predicates: (nat — Prop) — Prop;
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- higher-order functions: (nat — bool) — nat;
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- The relation =g of B-equality is the least equivalence relation
including S-reduction.

- n-reduction “implements” syntactic extensionality of functions:
(Az: Adtx) =, t if x ¢ FV(t)

- The relation =g,, of 8n-equality is the least equivalence relation
including 8- and n-reduction.

- The relation = of definitional equality (also called computational
equality) is defined to be Sn-equality.

- Definitional equality is different for different systems.
- Definitional equality is an equivalence relation compatible with
the structure of terms.
- E.g. ift =t then Az : A.ftz = Az : A.ft'z.
- Definitional equality is decidable.
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statement:
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Fact
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Proof.

Let f,g: A— B inT'. Assume ft = gt for all ¢ such that IV - ¢ : A for
some IV D T'. Take a fresh variable z ¢ FV(f, g,T') and let
I"=T,z:A. Then IV F x: A, so fz = gx. Hence also

A Afr=Ar: Age. But A\ : A.fr —, fand Az : A.gr —, g
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because = includes n-reduction. This implies f = g. O
Trivially, if syntactic functional extensionality holds and definitional
equality includes S-reduction, then it also includes n-reduction

(exercise). .
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- Strong normalisation theorem: if I' ¢ : 7 then every reduction
sequence starting from ¢ ends in a S-normal form (i.e., in a term
with no S-redexes).

- Uniqueness of normal forms: if ¢1, ¢ are in S-normal form and
tl =8 tg, then tl = tg.
- Exercise: (-equality on simply-typed terms is decidable.
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Intermission: derivation rules

- If we have derived the judgements Ji, ..., J, and the side
condition S holds, then we can derive the judgement .J.
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Intermission: derivation rules

Joooo Iy

- If we have derived the judgements Ji, ..., J, and the side
condition S holds, then we can derive the judgement .J.

- Sometimes we write the side condition(s) above the line together
with the judgements Ji,..., J,.

10 /23



Intermission: derivation trees

- To derive a judgement J we build a derivation tree using the
derivation rules: each node is a valid application of a derivation

rule.
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Intermission: derivation trees

- To derive a judgement J we build a derivation tree using the
derivation rules: each node is a valid application of a derivation
rule.

- At the leaves of the tree we need rules with no judgements above
the line.
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Intuitionistic higher-order logic: rules

NAX: pFXip M

A X M:o (=1) AEM: =1 F;AI—N:@(
DAFAMX o M:p=1 A MN 9

=E)

Tz: A AFM:o x¢ FV(A) VI AFM:Ve: A THt:A

VE
AR : AM Vo : A (v1) Iy A Mt p[t/x] (VE)

AFM:p T'E¢:Prop =1
AEM v

(conv)
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Intuitionistic higher-order logic: example derivation

AR Xy:Ve:APx=Q Thz:A T5AFXy:Ve:APx ThHz: A
AR Xz Per=Q AR Xox: Px
AR X jz(Xex) : Q

-I' = P:A—Prop, Q:Prop, z:A.
A = X;:Vzx:APr=Q, Xs:Vx:APz
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Higher-order logic: expressiveness

- A second-order predicate expressing the transitivity of a binary
relation:

Trans := AR: A — A — Prop.Vayz : A.Rxy = Ryz = Rxz
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Higher-order logic: expressiveness
- A second-order predicate expressing the transitivity of a binary
relation:

Trans := AR: A — A — Prop.Vayz : A.Rxy = Ryz = Rxz

- A binary relation R is included in S if for all z,y, Rxy implies
Szy:

Subrel := ARS: A — A — Prop.Vay : A.Rxy = Szy

- The transitive closure of a binary relation R is the least transitive
relation including R. This can be defined as the intersection of all
transitive relations including R:

TC:=AR:A— A — PropA\zy: AVS:A— A — Prop.
Trans(S) = Subrel RS = Szy
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Higher-order logic: expressiveness

TC:=AR:A— A — PropAxy: AVS: A— A — Prop.
Trans(S) = Subrel RS = Suzy

Exercise: for arbitrary R : A — A — Prop prove that TC(R) is indeed
the least transitive relation including R, i.e.,

- it is transitive:
Trans(TC(R))

- it includes R:
Subrel R (TC(R))

- every other transitive relation which includes R also
includes TC(R):

VS : A — A — Prop.Trans(S) = Subrel RS = Subrel (TC(R)) S
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Higher-order logic: expressiveness

Induction principle for natural numbers:

VP :nat — Prop.P0 = (Vn : nat.Pn = P(Sn)) = Vn :nat.Pn
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Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.
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Higher-order encodings of logical connectives

In higher-order logic all other connectives and equality may be
defined using V and =-.

- Truth: T :=VP :Prop.P = P.
- Falsity: 1 :=VP : Prop.P.
- Conjunction: ¢ Ay :=VP :Prop.(¢ = ¢ = P) = P.
- Disjunction: ¢ V¢ := VP : Prop.(¢p = P) = (p = P) = P.
- Existential quantification:
Jz: A.p(x) := VP : Prop.Vz : A(p(x) = P) = P.
- Leibniz equality on A: z =4 y :=VR: A — Prop.Rx = Ry.

The corresponding introduction and elimination rules are derivable.
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Classical higher-order logic

Excluded middle axiom:

VP :Prop.PV —P
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Extensionality

- Functional extensionality axiom (scheme):

Vfg: A— B.(Vz: A.fr=gz)= f=g.
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Extensionality

- Functional extensionality axiom (scheme):
Vfg: A— B.(Vz: A.fr=gz)= f=g.
NOTE:

- Syntactic functional extensionality does not imply functional
extensionality! T
- More precisely: that a formal system of logic satisfies syntactic
functional extensionality (a meta-theoretic property!) does not
imply that the functional extensionality axiom is provable in the
system.

- Functional extensionality does not imply syntactic functional
extensionality either!

- Propositional extensionality axiom:
Vplpg : PI‘Op.(Pl = P2) = Pl =Prop P2.
- Predicate extensionality axiom (scheme):

VRiRy: A— Prop.(Vx ARz & RQI) = R1 = Rs.
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Choice

Axiom of choice (scheme):

(Vx: AJy: B.Rxy) = 3f : A— BVx: A Rzx(fzx).
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Church’s Simple Type Theory

- Church’s Simple Type Theory is essentially classical higher-order
logic with extensionality and choice.
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Church’s Simple Type Theory

- Church’s Simple Type Theory is essentially classical higher-order
logic with extensionality and choice.
- Alonzo Church, “A formulation of the simple theory of types”,
JSL 1940.
- The simply-typed lambda-calculus originates from this paper,
where it was used to define the object terms of Church’s
higher-order logic.
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Relativised choice

Relativised axiom of choice:

(Va: A.Qr = Jy: B.Rxy) = 3f : A — BVx: A.Qr = Rx(fx).
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Diaconescu’s theorem

Theorem (Diaconescu)

In intuitionistic higher-order logic, the predicate extensionality axiom

and the relativised axiom of choice together imply the excluded middle
axiom.
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