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Definitional equality

Coq’s definitional equality ≡ includes:

· α-equality (implicitly): compatible renaming of bound variables,
e.g., λx : τ.t and λy : τ.t[y/x] are considered identical.

· β-equality: (λx : τ.t)s =β t[s/x].
· η-equality: λx : τ.tx =η t if x /∈ FV(t).
· ι-equality: generated by the reductions associated with fixpoints

and matches.
· δ-equality: a defined constant is definitionally equal to its

definition (unfolding/folding a definition).
· ζ-equality:

(let x := s in t) =ζ t[s/x]
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Conversion rule

Coq’s conversion relation ≤ includes definitional equality and
subtyping between universes.

Γ ⊢ t : τ Γ ⊢ τ ′ : U τ ≤ τ ′

Γ ⊢ t : τ ′
(conv)
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Propositional equality

· Definitional equality is a meta-level relation: it is not possible to
state in the logic that two terms are definitionally equal.

· t ≡ t′ is a (decidable) meta-level statement about the terms t, t′

treated as syntactic objects.
· It is not possible to write t ≡ t′ in the logic itself: t ≡ t′ is not a

type.
· Propositional equality t =τ t′ is a proposition in the logic which

expresses that t is equal to t′ in type τ .
· t =τ t′ is a type if t, t′ : τ . In particular, t =τ t′ may be assumed

(may appear in the context).
· = is defined in Coq’s logic as an inductive predicate.
· if t ≡ t′ and t, t′ : τ then t =τ t′ is inhabited (has an

element/proof).
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Propositional equality
Inductive eq (A : Type) (x : A) : A -> Prop :=
| eq_refl : eq A x x.

Arguments eq {A}.
Arguments eq_refl {A x}, {A}.
(* we can write just `eq_refl' or `eq_refl y' *)

Notation "x = y :> A" := (@eq A x y) (at level 70).
Notation "x = y" := (eq x y) (at level 70).

· In the inductive definition of eq, the type A is an implicit
parameter, the left side x of the equality is a parameter, the right
side is an index.

· The constructor eq_refl forces the index to be identical to the
parameter (modulo definitional equality).

· The full type of the constructor eq_refl states the reflexivity of
equality:

eq_refl : forall (A : Type) (x : A), x = x
· eq is a small propositional inductive type, so equality proofs may

be eliminated to create programs.
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Propositional equality elimination

eq_ind =
fun (A : Type) (x : A) (P : A -> Prop) (t : P x)

(y : A) (e : x = y) =>
match e in @eq _ _ y' return P y' with
| eq_refl => t
end
: forall (A : Type) (x : A) (P : A -> Prop),

P x -> forall y : A, x = y -> P y

· Inside the match branch, the index variable y’ is replaced with
the parameter x:

eq_refl : forall (A : Type) (x : A), x = x
So t is required to have type P x inside the branch, which agrees
with its actual type.

· The type of the entire match expression is P y.
· eq_ind computes on eq_refl:
eq_ind A a P t a (@eq_refl A a) →ι t
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Propositional equality elimination

Elimination into Type or Set is allowed for eq, because it is a small
propositional inductive type.
eq_rect =
fun (A : Type) (x : A) (P : A -> Type) (t : P x)

(y : A) (e : x = y) =>
match e in _ = y' return P y' with
| eq_refl => t
end
: forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, x = y -> P y

eq_rect A a P t a (eq_refl a) →ι t

Used to implement type casts.

7 / 24



Propositional equality elimination

Elimination into Type or Set is allowed for eq, because it is a small
propositional inductive type.
eq_rect =
fun (A : Type) (x : A) (P : A -> Type) (t : P x)

(y : A) (e : x = y) =>
match e in _ = y' return P y' with
| eq_refl => t
end
: forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, x = y -> P y

eq_rect A a P t a (eq_refl a) →ι t

Used to implement type casts.

7 / 24



Propositional equality elimination

Elimination into Type or Set is allowed for eq, because it is a small
propositional inductive type.
eq_rect =
fun (A : Type) (x : A) (P : A -> Type) (t : P x)

(y : A) (e : x = y) =>
match e in _ = y' return P y' with
| eq_refl => t
end
: forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, x = y -> P y

eq_rect A a P t a (eq_refl a) →ι t

Used to implement type casts.

7 / 24



Symmetry of equality

eq_sym =
fun (A : Type) (x y : A) (H : x = y) =>
match H in _ = y' return y' = x with
| eq_refl => @eq_refl A x
end
: forall (A : Type) (x y : A), x = y -> y = x

· Inside the match branch, the index variable y’ is replaced with x,
so @eq_refl A x is required to have type x = x.

· The entire match expression has type y = x.
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Transitivity of equality

eq_trans =
fun (A : Type) (x y z : A) (H1 : x = y) (H2 : y = z) =>
match H2 in (_ = z') return (x = z') with
| eq_refl => H1
end
: forall (A : Type) (x y z : A), x = y -> y = z -> x = z

· Inside the match branch, the index variable z’ is replaced with y,
so H1 is required to have type x = y.

· The entire match expression has type x = z.
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Compatibility of functions with equality

f_equal =
fun (A B : Type) (f : A -> B) (x y : A) (H : x = y) =>
match H in _ = y' return f x = f y' with
| eq_refl => @eq_refl B (f x)
end
: forall (A B : Type) (f : A -> B) (x y : A),

x = y -> f x = f y

· Inside the match branch, the index variable y’ is replaced with x,
so @eq_refl B (f x) is required to have type f x = f x.

· The entire match expression has type f x = f y.
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Equality tactics

· reflexivity is apply eq_refl.
eq_refl : forall (A : Type) (x : A), x = x

· symmetry is apply eq_sym.
eq_sym : forall (A : Type) (x y : A), x = y -> y = x

· transitivity y is apply eq_trans with (y := y).
eq_trans : forall (A : Type) (x y z : A),

x = y -> y = z -> x = z

· rewrite H with H : a = b is refine (eq_ind ..) with
appropriate arguments.

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

· E.g., if H : a = b and the goal is P a then rewrite H is
refine (eq_ind A b P _ a (eq_sym H)).
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Type casts

· eq_rect is used to implement type casts.
eq_rect : forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, x = y -> P y

eq_rect A a P t a (eq_refl a) →ι t

· For p : a = a, shouldn’t eq_rect A a P t a p be
(propositionally) equal to t?

· After all, eq_refl is the only constructor of eq, so we “should”
have p = eq_refl a.

· This is indeed the case if p is closed (contains no free
variables/axioms/opaque constants), because then p just
computes to eq_refl.

· But in general it is not possible to prove p = eq_refl a!
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Uniqueness of identity proofs

· The Uniqueness of Identity Proofs (UIP) axiom:
Axiom UIP
: forall (A : Type) (x y : A) (p1 p2 : x = y), p1 = p2

· The Uniqueness of Reflexive Identity Proofs (UIP-refl) axiom:
Axiom UIP_refl
: forall (A : Type) (x : A) (p : x = x), p = eq_refl x

These axioms are equivalent. They are not provable in Coq’s logic but
consistent with it.
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Invariance by substitution of reflexive equality proofs

Axiom eq_rect_eq
: forall (A : Type) (a : A) (P : A -> Type)

(t : P a) (p : a = a),
t = eq_rect A a P t a p.

· This axiom is equivalent to UIP.
· This axiom is the one actually present as an axiom in Coq’s

standard library, with UIP and UIP-refl derived from it as
theorems.
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Streicher’s Axiom K
Axiom K : forall (A : Type) (x : A) (P : x = x -> Type),

P (eq_refl x) -> forall p : x = x, P p.

· Streicher’s axiom K is also equivalent to UIP.
· Compare the (definable) dependent eliminator for equality:
eq_rect_dep
: forall (A : Type) (x : A)

(P : forall a : A, x = a -> Type),
P x eq_refl -> forall (y : A) (e : x = y), P y e

· Streicher’s axiom K can be given a computational interpretation:
K A a P t (eq_refl a) →ι t

· This rule holds definitionally in e.g. Agda, which makes working
with dependent types a bit easier.

· Agda’s dependent pattern matching relies on Streicher’s K.
· Streicher’s axiom K is incompatible with some recent

developments in type theory (univalence, Homotopy Type
Theory).
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UIP for types with decidable equality

· A type A has decidable equality if:
forall x y : A, {x = y} + {x <> y}

· In Coq, UIP is provable for types with decidable equality:
Theorem UIP_dec
: forall A : Type,

(forall x y : A, {x = y} + {x <> y}) ->
forall (x y : A) (p1 p2 : x = y), p1 = p2
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Heterogeneous equality

· Propositional equality eq can be used to compare only elements
of the same type.

· Equality between two elements a, b of two different types A,B
cannot be stated in terms of eq. Not even when A is
propositionally equal to B!
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Heterogeneous equality

vapp : forall {A n m},
vector A n -> vector A m -> vector A (n + m).

Lemma lem_vapp_nil {A} :
forall n (v : vector A n), vapp v vnil = v.

Error:
In environment
A : Type
n : nat
v : vector A n
The term "v" has type "vector A n" while it
is expected to have type "vector A (n + 0)".
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John Major equality
Inductive JMeq (A : Type) (x : A)

: forall B : Type, B -> Prop :=
| JMeq_refl : JMeq A x A x.

Arguments JMeq [A] _ [B].
Arguments JMeq_refl {A x}, [A] _.

Notation "x ~= y" := (JMeq x y) (at level 70).

· John Major equality enables us to state equality between
elements in two different types.

· However, we may use John Major equality only when the two
types are actually the same:

JMeq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x ~= y -> P y

· JMeq_ind is defined using JMeq_eq:
JMeq_eq : forall (A : Type) (x y : A), x ~= y -> x = y

· JMeq_eq is an axiom equivalent to UIP.
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John Major equality

This works:
vapp : forall {A n m},

vector A n -> vector A m -> vector A (n + m).

Lemma lem_vapp_nil {A} :
forall n (v : vector A n), vapp v vnil ~= v.
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John Major equality

John Major’s “classless society” widened people’s aspirations
to equality, but also the gap between rich and poor. (. . . ) In
much the same way, JMeq forms equations between members of
any type, but they cannot be treated as equals (i.e. substituted)
unless they are of the same type. Just as before, each thing is
only equal to itself.

Conor McBride, “Dependently Typed Functional Programs and their
Proofs”, PhD thesis, 1999
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Dependent equality

Inductive eq_dep (U : Type) (P : U -> Type) (p : U) (x : P p)
: forall q : U, P q -> Prop :=

| eq_dep_intro : eq_dep U P p x p x

eq_dep_ind =
fun (U : Type) (P : U -> Type) (p : U) (x : P p)

(Q : forall q : U, P q -> Prop) (f : Q p x) (q : U)
(y : P q) (e : eq_dep U P p x q y) =>

match e in eq_dep _ _ _ _ q' y' return Q q' y' with
| eq_dep_intro _ _ _ _ => f
end
: forall (U : Type) (P : U -> Type) (p : U) (x : P p)

(Q : forall q : U, P q -> Prop),
Q p x -> forall (q : U) (y : P q),
eq_dep U P p x q y -> Q q y

The eliminator eq_dep_ind does not depend on any axioms. We may
rewrite dependent equalities without UIP.
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Dependent equality

Inductive eq_dep (U : Type) (P : U -> Type) (p : U) (x : P p)
: forall q : U, P q -> Prop :=

| eq_dep_intro : eq_dep U P p x p x

To convert eq_dep to eq we need the axiom
eq_dep_eq
: forall (U : Type) (P : U -> Type) (p : U) (x y : P p),

eq_dep U P p x p y -> x = y

which is equivalent to UIP.
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Dependent equality

Inductive eq_dep (U : Type) (P : U -> Type) (p : U) (x : P p)
: forall q : U, P q -> Prop :=

| eq_dep_intro : eq_dep U P p x p x

· JMeq is equivalent to eq_dep Type (fun X => X).

· eq_dep is strictly finer than JMeq:

forall U P p q (x : P p) (y : P q),
eq_dep U P p x q y -> x ~= y.

exists U P p q (x : P p) (y : P q),
x ~= y /\ ~ eq_dep U P p x q y.
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