Table 1: Basic top-level commands

command	description
Print c	print the definition of the identifier c
Check M	print the type of the term M
Compute M	evaluate the term M
About c	display information about the indentifier c, including transparency information
Search P	search for occurences of the pattern P in the types of available objects
Search "S"	search for objects whose name contains S
SearchPattern P	search for theorems whose conclusion matches P
SearchHead P	search for theorems whose conclusion's head matches P
SearchRewrite P	search for theorems whose conclusion is an equality with one side matching P
Locate "N"	display the notation N
Print Assumptions c	print all axioms on which the definition of c depends
Set Printing All	switch on printing fully elaborated terms
Unset Printing All	switch off printing fully elaborated terms
Require M	load the module M
Require Import M	load the module M and import all identifiers from M into the current namespace
From P Require M	load the module M from package P

A pattern is a term with holes (wildcards) _. A hole matches an arbitrary term. The conclusion of $\forall (X_1:A_1)\dots(X_n:A_n).\varphi$ is φ if φ does not begin with \forall . A head of $MN_1\dots N_n$ is M.

Table 2: Basic proof-mode commands

command	description
Show Proof	show the proof term
Show n	show subgoal number n
Qed	finish the proof and recheck the proof term
Defined	same as Qed but used for definitions (the defined identifier is transparent)
Admitted	give up the proof and admit the definition/theorem as an axiom